These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
83 related items for PubMed ID: 12082270
1. The influence of repair tissue maturation on the response to oscillatory compression in a cartilage defect repair model. Hunter CJ, Levenston ME. Biorheology; 2002; 39(1-2):79-88. PubMed ID: 12082270 [Abstract] [Full Text] [Related]
2. Functional tissue engineering of chondral and osteochondral constructs. Lima EG, Mauck RL, Han SH, Park S, Ng KW, Ateshian GA, Hung CT. Biorheology; 2004; 41(3-4):577-90. PubMed ID: 15299288 [Abstract] [Full Text] [Related]
3. The influence of cyclic tension amplitude on chondrocyte matrix synthesis: experimental and finite element analyses. Connelly JT, Vanderploeg EJ, Levenston ME. Biorheology; 2004; 41(3-4):377-87. PubMed ID: 15299270 [Abstract] [Full Text] [Related]
4. Long-term culture of tissue engineered cartilage in a perfused chamber with mechanical stimulation. Seidel JO, Pei M, Gray ML, Langer R, Freed LE, Vunjak-Novakovic G. Biorheology; 2004; 41(3-4):445-58. PubMed ID: 15299276 [Abstract] [Full Text] [Related]
5. Importance of collagen orientation and depth-dependent fixed charge densities of cartilage on mechanical behavior of chondrocytes. Korhonen RK, Julkunen P, Wilson W, Herzog W. J Biomech Eng; 2008 Apr; 130(2):021003. PubMed ID: 18412490 [Abstract] [Full Text] [Related]
8. Mechanobiology of engineered cartilage cultured under a quantified fluid-dynamic environment. Raimondi MT, Boschetti F, Falcone L, Fiore GB, Remuzzi A, Marinoni E, Marazzi M, Pietrabissa R. Biomech Model Mechanobiol; 2002 Jun; 1(1):69-82. PubMed ID: 14586708 [Abstract] [Full Text] [Related]
9. Influence of a superficial tangential zone over repairing cartilage defects: implications for tissue engineering. Owen JR, Wayne JS. Biomech Model Mechanobiol; 2006 Jun; 5(2-3):102-10. PubMed ID: 16506018 [Abstract] [Full Text] [Related]
10. In vivo cultivation of human articular chondrocytes in a nude mouse-based contained defect organ culture model. Mueller-Rath R, Gavénis K, Gravius S, Andereya S, Mumme T, Schneider U. Biomed Mater Eng; 2007 Jun; 17(6):357-66. PubMed ID: 18032817 [Abstract] [Full Text] [Related]
13. Stress-relaxation of human patellar articular cartilage in unconfined compression: prediction of mechanical response by tissue composition and structure. Julkunen P, Wilson W, Jurvelin JS, Rieppo J, Qu CJ, Lammi MJ, Korhonen RK. J Biomech; 2008 Jun; 41(9):1978-86. PubMed ID: 18490021 [Abstract] [Full Text] [Related]
14. Xeno-implantation of pig chondrocytes into rabbit to treat localized articular cartilage defects: an animal model. Ramallal M, Maneiro E, López E, Fuentes-Boquete I, López-Armada MJ, Fernández-Sueiro JL, Galdo F, De Toro FJ, Blanco FJ. Wound Repair Regen; 2004 Jun; 12(3):337-45. PubMed ID: 15225212 [Abstract] [Full Text] [Related]
15. Microenvironment regulation of extracellular signal-regulated kinase activity in chondrocytes: effects of culture configuration, interleukin-1, and compressive stress. Li KW, Wang AS, Sah RL. Arthritis Rheum; 2003 Mar; 48(3):689-99. PubMed ID: 12632422 [Abstract] [Full Text] [Related]
16. Contact models of repaired articular surfaces: influence of loading conditions and the superficial tangential zone. Owen JR, Wayne JS. Biomech Model Mechanobiol; 2011 Jul; 10(4):461-71. PubMed ID: 20700624 [Abstract] [Full Text] [Related]
17. Novel injectable gel (system) as a vehicle for human articular chondrocytes in cartilage tissue regeneration. Pereira RC, Scaranari M, Castagnola P, Grandizio M, Azevedo HS, Reis RL, Cancedda R, Gentili C. J Tissue Eng Regen Med; 2009 Feb; 3(2):97-106. PubMed ID: 19172577 [Abstract] [Full Text] [Related]