These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


111 related items for PubMed ID: 12083522

  • 1. Origins of the high stability of an in vitro-selected cold-shock protein.
    Martin A, Kather I, Schmid FX.
    J Mol Biol; 2002 May 17; 318(5):1341-9. PubMed ID: 12083522
    [Abstract] [Full Text] [Related]

  • 2. Electrostatic stabilization of a thermophilic cold shock protein.
    Perl D, Schmid FX.
    J Mol Biol; 2001 Oct 19; 313(2):343-57. PubMed ID: 11800561
    [Abstract] [Full Text] [Related]

  • 3. Stabilization of the cold shock protein CspB from Bacillus subtilis by evolutionary optimization of Coulombic interactions.
    Wunderlich M, Martin A, Schmid FX.
    J Mol Biol; 2005 Apr 15; 347(5):1063-76. PubMed ID: 15784264
    [Abstract] [Full Text] [Related]

  • 4. Crystal structures of mutant forms of the Bacillus caldolyticus cold shock protein differing in thermal stability.
    Delbrück H, Mueller U, Perl D, Schmid FX, Heinemann U.
    J Mol Biol; 2001 Oct 19; 313(2):359-69. PubMed ID: 11800562
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Thermal stability and atomic-resolution crystal structure of the Bacillus caldolyticus cold shock protein.
    Mueller U, Perl D, Schmid FX, Heinemann U.
    J Mol Biol; 2000 Apr 07; 297(4):975-88. PubMed ID: 10736231
    [Abstract] [Full Text] [Related]

  • 7. Electrostatic contributions to the stability of a thermophilic cold shock protein.
    Zhou HX, Dong F.
    Biophys J; 2003 Apr 07; 84(4):2216-22. PubMed ID: 12668430
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Mechanism of thermostabilization in a designed cold shock protein with optimized surface electrostatic interactions.
    Makhatadze GI, Loladze VV, Gribenko AV, Lopez MM.
    J Mol Biol; 2004 Feb 27; 336(4):929-42. PubMed ID: 15095870
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. The effects of ionic strength on protein stability: the cold shock protein family.
    Dominy BN, Perl D, Schmid FX, Brooks CL.
    J Mol Biol; 2002 May 31; 319(2):541-54. PubMed ID: 12051927
    [Abstract] [Full Text] [Related]

  • 17. Role of electrostatic interactions for the stability and folding behavior of cold shock protein.
    Su JG, Chen WZ, Wang CX.
    Proteins; 2010 Jul 31; 78(9):2157-69. PubMed ID: 20455270
    [Abstract] [Full Text] [Related]

  • 18. Thermodynamic and kinetic determinants of Thermotoga maritima cold shock protein stability: a structural and dynamic analysis.
    Motono C, Gromiha MM, Kumar S.
    Proteins; 2008 May 01; 71(2):655-69. PubMed ID: 17975840
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Characterization of cspB, a Bacillus subtilis inducible cold shock gene affecting cell viability at low temperatures.
    Willimsky G, Bang H, Fischer G, Marahiel MA.
    J Bacteriol; 1992 Oct 01; 174(20):6326-35. PubMed ID: 1400185
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.