These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
269 related items for PubMed ID: 12090822
21. Dendritic glutamate-induced bursting in the prefrontal cortex: further characterization and effects of phencyclidine. Shi WX, Zhang XX. J Pharmacol Exp Ther; 2003 May; 305(2):680-7. PubMed ID: 12606677 [Abstract] [Full Text] [Related]
22. The effects of ketamine on prefrontal glutamate neurotransmission in healthy and depressed subjects. Abdallah CG, De Feyter HM, Averill LA, Jiang L, Averill CL, Chowdhury GMI, Purohit P, de Graaf RA, Esterlis I, Juchem C, Pittman BP, Krystal JH, Rothman DL, Sanacora G, Mason GF. Neuropsychopharmacology; 2018 Sep; 43(10):2154-2160. PubMed ID: 29977074 [Abstract] [Full Text] [Related]
23. Glutamate and schizophrenia: beyond the dopamine hypothesis. Coyle JT. Cell Mol Neurobiol; 2006 Sep; 26(4-6):365-84. PubMed ID: 16773445 [Abstract] [Full Text] [Related]
24. Do NMDA receptor antagonist models of schizophrenia predict the clinical efficacy of antipsychotic drugs? Large CH. J Psychopharmacol; 2007 May; 21(3):283-301. PubMed ID: 17591656 [Abstract] [Full Text] [Related]
25. Involvement of a dysfunctional dopamine-D1/N-methyl-d-aspartate-NR1 and Ca2+/calmodulin-dependent protein kinase II pathway in the impairment of latent learning in a model of schizophrenia induced by phencyclidine. Mouri A, Noda Y, Noda A, Nakamura T, Tokura T, Yura Y, Nitta A, Furukawa H, Nabeshima T. Mol Pharmacol; 2007 Jun; 71(6):1598-609. PubMed ID: 17344353 [Abstract] [Full Text] [Related]
26. The NMDA antagonist model for schizophrenia: promise and pitfalls. Abi-Saab WM, D'Souza DC, Moghaddam B, Krystal JH. Pharmacopsychiatry; 1998 Jul; 31 Suppl 2():104-9. PubMed ID: 9754841 [Abstract] [Full Text] [Related]
27. Ketamine and phencyclidine: the good, the bad and the unexpected. Lodge D, Mercier MS. Br J Pharmacol; 2015 Sep; 172(17):4254-76. PubMed ID: 26075331 [Abstract] [Full Text] [Related]
28. Models of schizophrenia in humans and animals based on inhibition of NMDA receptors. Bubeníková-Valesová V, Horácek J, Vrajová M, Höschl C. Neurosci Biobehav Rev; 2008 Jul; 32(5):1014-23. PubMed ID: 18471877 [Abstract] [Full Text] [Related]
29. Significance of dysfunctional glutamatergic transmission for the development of psychotic symptoms. Pietraszek M. Pol J Pharmacol; 2003 Jul; 55(2):133-54. PubMed ID: 12926541 [Abstract] [Full Text] [Related]
30. Reviewing the ketamine model for schizophrenia. Frohlich J, Van Horn JD. J Psychopharmacol; 2014 Apr; 28(4):287-302. PubMed ID: 24257811 [Abstract] [Full Text] [Related]
31. PCP-based mice models of schizophrenia: differential behavioral, neurochemical and cellular effects of acute and subchronic treatments. Castañé A, Santana N, Artigas F. Psychopharmacology (Berl); 2015 Nov; 232(21-22):4085-97. PubMed ID: 25943167 [Abstract] [Full Text] [Related]
33. Ketamine administration during the second postnatal week induces enduring schizophrenia-like behavioral symptoms and reduces parvalbumin expression in the medial prefrontal cortex of adult mice. Jeevakumar V, Driskill C, Paine A, Sobhanian M, Vakil H, Morris B, Ramos J, Kroener S. Behav Brain Res; 2015 Apr 01; 282():165-75. PubMed ID: 25591475 [Abstract] [Full Text] [Related]
34. Blocking NMDAR Disrupts Spike Timing and Decouples Monkey Prefrontal Circuits: Implications for Activity-Dependent Disconnection in Schizophrenia. Zick JL, Blackman RK, Crowe DA, Amirikian B, DeNicola AL, Netoff TI, Chafee MV. Neuron; 2018 Jun 27; 98(6):1243-1255.e5. PubMed ID: 29861281 [Abstract] [Full Text] [Related]
35. Effects of ketamine on anterior cingulate glutamate metabolism in healthy humans: a 4-T proton MRS study. Rowland LM, Bustillo JR, Mullins PG, Jung RE, Lenroot R, Landgraf E, Barrow R, Yeo R, Lauriello J, Brooks WM. Am J Psychiatry; 2005 Feb 27; 162(2):394-6. PubMed ID: 15677610 [Abstract] [Full Text] [Related]
36. The N-methyl-D-aspartate receptor and schizophrenia. Strous RD, Javitt DC. Isr J Med Sci; 1996 May 27; 32(5):275-81. PubMed ID: 8641863 [No Abstract] [Full Text] [Related]
37. Glutamate and schizophrenia: phencyclidine, N-methyl-D-aspartate receptors, and dopamine-glutamate interactions. Javitt DC. Int Rev Neurobiol; 2007 May 27; 78():69-108. PubMed ID: 17349858 [Abstract] [Full Text] [Related]
38. Aberrant regulation of NMDA receptors by dopamine D4 signaling in rats after phencyclidine exposure. Wang X, Gu Z, Zhong P, Chen G, Feng J, Yan Z. Mol Cell Neurosci; 2006 Jan 27; 31(1):15-25. PubMed ID: 16198123 [Abstract] [Full Text] [Related]
39. Targeting prefrontal cortical dopamine D1 and N-methyl-D-aspartate receptor interactions in schizophrenia treatment. Yang CR, Chen L. Neuroscientist; 2005 Oct 27; 11(5):452-70. PubMed ID: 16151046 [Abstract] [Full Text] [Related]
40. Role of mGlu5 Receptors and Inhibitory Neurotransmission in M1 Dependent Muscarinic LTD in the Prefrontal Cortex: Implications in Schizophrenia. Ghoshal A, Moran SP, Dickerson JW, Joffe ME, Grueter BA, Xiang Z, Lindsley CW, Rook JM, Conn PJ. ACS Chem Neurosci; 2017 Oct 18; 8(10):2254-2265. PubMed ID: 28679049 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]