These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


421 related items for PubMed ID: 12091538

  • 21. Effects of low-frequency whole-body vibration on motor-evoked potentials in healthy men.
    Mileva KN, Bowtell JL, Kossev AR.
    Exp Physiol; 2009 Jan; 94(1):103-16. PubMed ID: 18658234
    [Abstract] [Full Text] [Related]

  • 22. Peripheral sensory activation of cortical circuits in the leg motor cortex of man.
    Roy FD, Gorassini MA.
    J Physiol; 2008 Sep 01; 586(17):4091-105. PubMed ID: 18599540
    [Abstract] [Full Text] [Related]

  • 23. Cortical control of human soleus muscle during volitional and postural activities studied using focal magnetic stimulation.
    Lavoie BA, Cody FW, Capaday C.
    Exp Brain Res; 1995 Sep 01; 103(1):97-107. PubMed ID: 7615042
    [Abstract] [Full Text] [Related]

  • 24. Transcranial magnetic stimulation induced early silent period and rebound activity re-examined.
    Özyurt MG, Haavik H, Nedergaard RW, Topkara B, Şenocak BS, Göztepe MB, Niazi IK, Türker KS.
    PLoS One; 2019 Sep 01; 14(12):e0225535. PubMed ID: 31800618
    [Abstract] [Full Text] [Related]

  • 25. Responses of single motor units in human masseter to transcranial magnetic stimulation of either hemisphere.
    Pearce SL, Miles TS, Thompson PD, Nordstrom MA.
    J Physiol; 2003 Jun 01; 549(Pt 2):583-96. PubMed ID: 12692177
    [Abstract] [Full Text] [Related]

  • 26. Electrical stimulation of the human common peroneal nerve elicits lasting facilitation of cortical motor-evoked potentials.
    Knash ME, Kido A, Gorassini M, Chan KM, Stein RB.
    Exp Brain Res; 2003 Dec 01; 153(3):366-77. PubMed ID: 14610631
    [Abstract] [Full Text] [Related]

  • 27. Influence of sensory deprivation and perturbation of trigeminal afferent fibers on corticomotor control of human tongue musculature.
    Halkjaer L, Melsen B, McMillan AS, Svensson P.
    Exp Brain Res; 2006 Apr 01; 170(2):199-205. PubMed ID: 16328282
    [Abstract] [Full Text] [Related]

  • 28. Effects of posture and coactivation on corticomotor excitability of ankle muscles.
    Kesar TM, Eicholtz S, Lin BJ, Wolf SL, Borich MR.
    Restor Neurol Neurosci; 2018 Apr 01; 36(1):131-146. PubMed ID: 29439363
    [Abstract] [Full Text] [Related]

  • 29. Simulation of electromyographic recordings following transcranial magnetic stimulation.
    Moezzi B, Schaworonkow N, Plogmacher L, Goldsworthy MR, Hordacre B, McDonnell MD, Iannella N, Ridding MC, Triesch J.
    J Neurophysiol; 2018 Nov 01; 120(5):2532-2541. PubMed ID: 29975165
    [Abstract] [Full Text] [Related]

  • 30. Changes in corticospinal excitability evoked by common peroneal nerve stimulation depend on stimulation frequency.
    Mang CS, Lagerquist O, Collins DF.
    Exp Brain Res; 2010 May 01; 203(1):11-20. PubMed ID: 20217400
    [Abstract] [Full Text] [Related]

  • 31. The effect of transcranial magnetic stimulation and peripheral nerve stimulation on corticomuscular coherence in humans.
    Hansen NL, Nielsen JB.
    J Physiol; 2004 Nov 15; 561(Pt 1):295-306. PubMed ID: 15358809
    [Abstract] [Full Text] [Related]

  • 32. Characteristics and variability of lower limb motoneuron responses to transcranial magnetic stimulation.
    Brouwer B, Qiao J.
    Electroencephalogr Clin Neurophysiol; 1995 Feb 15; 97(1):49-54. PubMed ID: 7533721
    [Abstract] [Full Text] [Related]

  • 33. Distribution and latency of muscle responses to transcranial magnetic stimulation of motor cortex after spinal cord injury in humans.
    Calancie B, Alexeeva N, Broton JG, Suys S, Hall A, Klose KJ.
    J Neurotrauma; 1999 Jan 15; 16(1):49-67. PubMed ID: 9989466
    [Abstract] [Full Text] [Related]

  • 34. Reciprocal inhibition between motor neurons of the tibialis anterior and triceps surae in humans.
    Yavuz UŞ, Negro F, Diedrichs R, Farina D.
    J Neurophysiol; 2018 May 01; 119(5):1699-1706. PubMed ID: 29384455
    [Abstract] [Full Text] [Related]

  • 35. Modulation of ipsi- and contralateral reflex responses in unrestrained walking cats.
    Duysens J, Loeb GE.
    J Neurophysiol; 1980 Nov 01; 44(5):1024-37. PubMed ID: 7441320
    [Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37. Transcranial magnetic stimulation and stretch reflexes in the tibialis anterior muscle during human walking.
    Christensen LO, Andersen JB, Sinkjaer T, Nielsen J.
    J Physiol; 2001 Mar 01; 531(Pt 2):545-57. PubMed ID: 11230526
    [Abstract] [Full Text] [Related]

  • 38. Evidence suggesting that a transcortical reflex pathway contributes to cutaneous reflexes in the tibialis anterior muscle during walking in man.
    Christensen LO, Morita H, Petersen N, Nielsen J.
    Exp Brain Res; 1999 Jan 01; 124(1):59-68. PubMed ID: 9928790
    [Abstract] [Full Text] [Related]

  • 39. Transcranial magnetic stimulation intensity affects exercise-induced changes in corticomotoneuronal excitability and inhibition and voluntary activation.
    Bachasson D, Temesi J, Gruet M, Yokoyama K, Rupp T, Millet GY, Verges S.
    Neuroscience; 2016 Feb 09; 314():125-33. PubMed ID: 26642805
    [Abstract] [Full Text] [Related]

  • 40. Paired-pulse magnetic stimulation of the human motor cortex: differences among I waves.
    Hanajima R, Ugawa Y, Terao Y, Sakai K, Furubayashi T, Machii K, Kanazawa I.
    J Physiol; 1998 Jun 01; 509 ( Pt 2)(Pt 2):607-18. PubMed ID: 9575308
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 22.