These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


126 related items for PubMed ID: 12095206

  • 1. Photon path distribution in inhomogeneous turbid media: theoretical analysis and a method of calculation.
    Tsuchiya Y.
    J Opt Soc Am A Opt Image Sci Vis; 2002 Jul; 19(7):1383-9. PubMed ID: 12095206
    [Abstract] [Full Text] [Related]

  • 2. Photon path distribution and optical responses of turbid media: theoretical analysis based on the microscopic Beer-Lambert law.
    Tsuchiya Y.
    Phys Med Biol; 2001 Aug; 46(8):2067-84. PubMed ID: 11512611
    [Abstract] [Full Text] [Related]

  • 3. Optical computed tomography in a turbid medium using early arriving photons.
    Chen K, Perelman LT, Zhang Q, Dasari RR, Feld MS.
    J Biomed Opt; 2000 Apr; 5(2):144-54. PubMed ID: 10938778
    [Abstract] [Full Text] [Related]

  • 4. Source of error in calculation of optical diffuse reflectance from turbid media using diffusion theory.
    Wang LV, Jacques SL.
    Comput Methods Programs Biomed; 2000 Mar; 61(3):163-70. PubMed ID: 10710179
    [Abstract] [Full Text] [Related]

  • 5. Photon migration in turbid media with anisotropic optical properties.
    Dudko OK, Weiss GH, Chernomordik V, Gandjbakhche AH.
    Phys Med Biol; 2004 Sep 07; 49(17):3979-89. PubMed ID: 15470918
    [Abstract] [Full Text] [Related]

  • 6. Model for photon migration in turbid biological media.
    Bonner RF, Nossal R, Havlin S, Weiss GH.
    J Opt Soc Am A; 1987 Mar 07; 4(3):423-32. PubMed ID: 3572576
    [Abstract] [Full Text] [Related]

  • 7. Frequency-domain theory of laser infrared photothermal radiometric detection of thermal waves generated by diffuse-photon-density wave fields in turbid media.
    Mandelis A, Feng C.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Feb 07; 65(2 Pt 1):021909. PubMed ID: 11863565
    [Abstract] [Full Text] [Related]

  • 8. Frequency domain photothermoacoustic signal amplitude dependence on the optical properties of water: turbid polyvinyl chloride-plastisol system.
    Spirou GM, Mandelis A, Vitkin IA, Whelan WM.
    Appl Opt; 2008 May 10; 47(14):2564-73. PubMed ID: 18470251
    [Abstract] [Full Text] [Related]

  • 9. Tomographic imaging of absolute optical absorption coefficient in turbid media using combined photoacoustic and diffusing light measurements.
    Yin L, Wang Q, Zhang Q, Jiang H.
    Opt Lett; 2007 Sep 01; 32(17):2556-8. PubMed ID: 17767303
    [Abstract] [Full Text] [Related]

  • 10. Evaluation of optical properties of highly scattering media by moments of distributions of times of flight of photons.
    Liebert A, Wabnitz H, Grosenick D, Möller M, Macdonald R, Rinneberg H.
    Appl Opt; 2003 Oct 01; 42(28):5785-92. PubMed ID: 14528944
    [Abstract] [Full Text] [Related]

  • 11. The finite-element method for the propagation of light in scattering media: frequency domain case.
    Schweiger M, Arridge SR.
    Med Phys; 1997 Jun 01; 24(6):895-902. PubMed ID: 9198025
    [Abstract] [Full Text] [Related]

  • 12. Analytical calculation of the mean time spent by photons inside an absorptive inclusion embedded in a highly scattering medium.
    Chernomordik V, Hattery DW, Gannot I, Zaccanti G, Gandjbakhche A.
    J Biomed Opt; 2002 Jul 01; 7(3):486-92. PubMed ID: 12175301
    [Abstract] [Full Text] [Related]

  • 13. Green functions for diffuse photon-density waves generated by a line source in two nonabsorbing turbid media in contact.
    Shendeleva ML.
    Appl Opt; 2004 Mar 10; 43(8):1638-42. PubMed ID: 15046165
    [Abstract] [Full Text] [Related]

  • 14. Adaptive calibration for object localization in turbid media with interfering diffuse photon density waves.
    Chen Y, Mu C, Intes X, Chance B.
    Appl Opt; 2002 Dec 01; 41(34):7325-33. PubMed ID: 12477125
    [Abstract] [Full Text] [Related]

  • 15. Mapping optical fluence variations in highly scattering media by measuring ultrasonically modulated backscattered light.
    Hussain A, Daoudi K, Hondebrink E, Steenbergen W.
    J Biomed Opt; 2014 Jun 01; 19(6):066002. PubMed ID: 24887744
    [Abstract] [Full Text] [Related]

  • 16. Numerical solution of inverse scattering for near-field optics.
    Bao G, Li P.
    Opt Lett; 2007 Jun 01; 32(11):1465-7. PubMed ID: 17546156
    [Abstract] [Full Text] [Related]

  • 17. Efficient computation of the steady-state and time-domain solutions of the photon diffusion equation in layered turbid media.
    Helton M, Zerafa S, Vishwanath K, Mycek MA.
    Sci Rep; 2022 Nov 08; 12(1):18979. PubMed ID: 36347893
    [Abstract] [Full Text] [Related]

  • 18. Multiple passages of light through an absorption inhomogeneity in optical imaging of turbid media.
    Xu M, Cai W, Alfano RR.
    Opt Lett; 2004 Aug 01; 29(15):1757-9. PubMed ID: 15354296
    [Abstract] [Full Text] [Related]

  • 19. In vivo determination of local skin optical properties and photon path length by use of spatially resolved diffuse reflectance with applications in laser Doppler flowmetry.
    Larsson M, Nilsson H, Strömberg T.
    Appl Opt; 2003 Jan 01; 42(1):124-34. PubMed ID: 12518831
    [Abstract] [Full Text] [Related]

  • 20. Equivalence of four Monte Carlo methods for photon migration in turbid media.
    Sassaroli A, Martelli F.
    J Opt Soc Am A Opt Image Sci Vis; 2012 Oct 01; 29(10):2110-7. PubMed ID: 23201658
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.