These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


185 related items for PubMed ID: 12111162

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Impact of an energy-conserving strategy on succinate production under weak acidic and anaerobic conditions in Enterobacter aerogenes.
    Tajima Y, Yamamoto Y, Fukui K, Nishio Y, Hashiguchi K, Usuda Y, Sode K.
    Microb Cell Fact; 2015 Jun 11; 14():80. PubMed ID: 26063229
    [Abstract] [Full Text] [Related]

  • 6. Anaerobic homolactate fermentation with Saccharomyces cerevisiae results in depletion of ATP and impaired metabolic activity.
    Abbott DA, van den Brink J, Minneboo IM, Pronk JT, van Maris AJ.
    FEMS Yeast Res; 2009 May 11; 9(3):349-57. PubMed ID: 19416100
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Energy metabolism of trypanosomatids: adaptation to available carbon sources.
    Bringaud F, Rivière L, Coustou V.
    Mol Biochem Parasitol; 2006 Sep 11; 149(1):1-9. PubMed ID: 16682088
    [Abstract] [Full Text] [Related]

  • 12. Effects of eliminating pyruvate node pathways and of coexpression of heterogeneous carboxylation enzymes on succinate production by Enterobacter aerogenes.
    Tajima Y, Yamamoto Y, Fukui K, Nishio Y, Hashiguchi K, Usuda Y, Sode K.
    Appl Environ Microbiol; 2015 Feb 11; 81(3):929-37. PubMed ID: 25416770
    [Abstract] [Full Text] [Related]

  • 13. Effect of carbon source perturbations on transcriptional regulation of metabolic fluxes in Saccharomyces cerevisiae.
    Cakir T, Kirdar B, Onsan ZI, Ulgen KO, Nielsen J.
    BMC Syst Biol; 2007 Mar 27; 1():18. PubMed ID: 17408508
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Central carbon metabolism of Saccharomyces cerevisiae in anaerobic, oxygen-limited and fully aerobic steady-state conditions and following a shift to anaerobic conditions.
    Wiebe MG, Rintala E, Tamminen A, Simolin H, Salusjärvi L, Toivari M, Kokkonen JT, Kiuru J, Ketola RA, Jouhten P, Huuskonen A, Maaheimo H, Ruohonen L, Penttilä M.
    FEMS Yeast Res; 2008 Feb 27; 8(1):140-54. PubMed ID: 17425669
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Fermentation and metabolic characteristics of Gluconacetobacter oboediens for different carbon sources.
    Sarkar D, Yabusaki M, Hasebe Y, Ho PY, Kohmoto S, Kaga T, Shimizu K.
    Appl Microbiol Biotechnol; 2010 Jun 27; 87(1):127-36. PubMed ID: 20191270
    [Abstract] [Full Text] [Related]

  • 19. The effect of lactic acid on anaerobic carbon or nitrogen limited chemostat cultures of Saccharomyces cerevisiae.
    Thomsson E, Larsson C.
    Appl Microbiol Biotechnol; 2006 Jul 27; 71(4):533-42. PubMed ID: 16317544
    [Abstract] [Full Text] [Related]

  • 20. Deletion of lactate dehydrogenase in Enterobacter aerogenes to enhance 2,3-butanediol production.
    Jung MY, Ng CY, Song H, Lee J, Oh MK.
    Appl Microbiol Biotechnol; 2012 Jul 27; 95(2):461-9. PubMed ID: 22297429
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.