These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
299 related items for PubMed ID: 12112377
1. Astrocytes in adult rat brain express type 2 inositol 1,4,5-trisphosphate receptors. Holtzclaw LA, Pandhit S, Bare DJ, Mignery GA, Russell JT. Glia; 2002 Jul; 39(1):69-84. PubMed ID: 12112377 [Abstract] [Full Text] [Related]
2. Heterooligomer of type 1 and type 2 inositol 1, 4, 5-trisphosphate receptor expressed in rat liver membrane fraction exists as tetrameric complex. Onoue H, Tanaka H, Tanaka K, Doira N, Ito Y. Biochem Biophys Res Commun; 2000 Jan 27; 267(3):928-33. PubMed ID: 10673393 [Abstract] [Full Text] [Related]
3. Modifications in the phosphoinositide signaling pathway by adrenal glucocorticoids in rat brain: focus on phosphoinositide-specific phospholipase C and inositol 1,4,5-trisphosphate. Dwivedi Y, Rizavi HS, Rao JS, Pandey GN. J Pharmacol Exp Ther; 2000 Oct 27; 295(1):244-54. PubMed ID: 10991986 [Abstract] [Full Text] [Related]
4. Nuclear inositol 1,4,5-trisphosphate receptors regulate local Ca2+ transients and modulate cAMP response element binding protein phosphorylation. Cárdenas C, Liberona JL, Molgó J, Colasante C, Mignery GA, Jaimovich E. J Cell Sci; 2005 Jul 15; 118(Pt 14):3131-40. PubMed ID: 16014380 [Abstract] [Full Text] [Related]
5. Morphologic characterization of rat taste receptor cells that express components of the phospholipase C signaling pathway. Clapp TR, Yang R, Stoick CL, Kinnamon SC, Kinnamon JC. J Comp Neurol; 2004 Jan 12; 468(3):311-21. PubMed ID: 14681927 [Abstract] [Full Text] [Related]
7. Functional analysis of the green fluorescent protein-tagged inositol 1,4,5-trisphosphate receptor type 3 in Ca(2+) release and entry in DT40 B lymphocytes. Morita T, Tanimura A, Nezu A, Kurosaki T, Tojyo Y. Biochem J; 2004 Sep 15; 382(Pt 3):793-801. PubMed ID: 15175012 [Abstract] [Full Text] [Related]
8. Comparison of type 2 inositol 1,4,5-trisphosphate receptor distribution and subcellular Ca2+ release sites that support Ca2+ waves in cultured astrocytes. Sheppard CA, Simpson PB, Sharp AH, Nucifora FC, Ross CA, Lange GD, Russell JT. J Neurochem; 1997 Jun 15; 68(6):2317-27. PubMed ID: 9166724 [Abstract] [Full Text] [Related]
10. The N-terminal Ca2+-independent calmodulin-binding site on the inositol 1,4,5-trisphosphate receptor is responsible for calmodulin inhibition, even though this inhibition requires Ca2+. Kasri NN, Bultynck G, Smyth J, Szlufcik K, Parys JB, Callewaert G, Missiaen L, Fissore RA, Mikoshiba K, de Smedt H. Mol Pharmacol; 2004 Aug 15; 66(2):276-84. PubMed ID: 15266018 [Abstract] [Full Text] [Related]
11. Glutamate pretreatment affects Ca2+ signaling in processes of astrocyte pairs. Padmashri R, Sikdar SK. J Neurochem; 2007 Jan 15; 100(1):105-17. PubMed ID: 17059561 [Abstract] [Full Text] [Related]
12. The suppressor domain of inositol 1,4,5-trisphosphate receptor plays an essential role in the protection against apoptosis. Szlufcik K, Bultynck G, Callewaert G, Missiaen L, Parys JB, De Smedt H. Cell Calcium; 2006 Apr 15; 39(4):325-36. PubMed ID: 16458354 [Abstract] [Full Text] [Related]
13. Carbonic anhydrase-related protein is a novel binding protein for inositol 1,4,5-trisphosphate receptor type 1. Hirota J, Ando H, Hamada K, Mikoshiba K. Biochem J; 2003 Jun 01; 372(Pt 2):435-41. PubMed ID: 12611586 [Abstract] [Full Text] [Related]
14. Type 2 inositol 1,4,5-trisphosphate receptor is predominantly involved in agonist-induced Ca(2+) signaling in Bergmann glia. Tamamushi S, Nakamura T, Inoue T, Ebisui E, Sugiura K, Bannai H, Mikoshiba K. Neurosci Res; 2012 Sep 01; 74(1):32-41. PubMed ID: 22771532 [Abstract] [Full Text] [Related]
15. Distribution of the inositol 1,4,5-trisphosphate receptor, P400, in adult rat brain. Rodrigo J, Suburo AM, Bentura ML, Fernández T, Nakade S, Mikoshiba K, Martínez-Murillo R, Polak JM. J Comp Neurol; 1993 Nov 15; 337(3):493-517. PubMed ID: 8282854 [Abstract] [Full Text] [Related]
16. TGF-beta-induced Ca(2+) influx involves the type III IP(3) receptor and regulates actin cytoskeleton. McGowan TA, Madesh M, Zhu Y, Wang L, Russo M, Deelman L, Henning R, Joseph S, Hajnoczky G, Sharma K. Am J Physiol Renal Physiol; 2002 May 15; 282(5):F910-20. PubMed ID: 11934702 [Abstract] [Full Text] [Related]
17. Postsynaptic IP3 receptor-mediated Ca2+ release modulates synaptic transmission in hippocampal neurons. Kelly PT, Mackinnon RL, Dietz RV, Maher BJ, Wang J. Brain Res Mol Brain Res; 2005 Apr 27; 135(1-2):232-48. PubMed ID: 15857686 [Abstract] [Full Text] [Related]
18. Differential cellular expression of isoforms of inositol 1,4,5-triphosphate receptors in neurons and glia in brain. Sharp AH, Nucifora FC, Blondel O, Sheppard CA, Zhang C, Snyder SH, Russell JT, Ryugo DK, Ross CA. J Comp Neurol; 1999 Apr 05; 406(2):207-20. PubMed ID: 10096607 [Abstract] [Full Text] [Related]
19. Loss of IP3 receptor-dependent Ca2+ increases in hippocampal astrocytes does not affect baseline CA1 pyramidal neuron synaptic activity. Petravicz J, Fiacco TA, McCarthy KD. J Neurosci; 2008 May 07; 28(19):4967-73. PubMed ID: 18463250 [Abstract] [Full Text] [Related]
20. Signaling proteins in the axoglial apparatus of sciatic nerve nodes of Ranvier. Toews JC, Schram V, Weerth SH, Mignery GA, Russell JT. Glia; 2007 Jan 15; 55(2):202-13. PubMed ID: 17091480 [Abstract] [Full Text] [Related] Page: [Next] [New Search]