These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
129 related items for PubMed ID: 12115118
1. Mechanism of adaptation of an atypical alkaline p-nitrophenyl phosphatase from the archaeon Halobacterium salinarum at low-water environments. Marhuenda-Egea FC, Piera-Velázquez S, Cadenas C, Cadenas E. Biotechnol Bioeng; 2002 Jun 05; 78(5):497-502. PubMed ID: 12115118 [Abstract] [Full Text] [Related]
2. Stability of an extreme halophilic alkaline phosphatase from Halobacterium salinarium in non-conventional medium. Marhuenda-Egea FC, Piera-Velázquez S, Cadenas C, Cadenas E. J Biotechnol; 2001 May 18; 87(3):255-61. PubMed ID: 11334667 [Abstract] [Full Text] [Related]
3. Kinetic mechanism of Halobacterium halobium Mn(2+)-activated alkaline phosphatase. Bonet ML, Llorca FI, Cadenas E. Biochem Mol Biol Int; 1994 Dec 18; 34(6):1109-20. PubMed ID: 7696983 [Abstract] [Full Text] [Related]
4. Kinetic regulation of an alkaline p-nitrophenylphosphate phosphatase from Halobacterium salinarum in low water system by Mn2+ and monovalent cations. Marhuenda-Egea FC, Piera-Velázquez S, Cadenas C, Cadenas E. FEMS Microbiol Lett; 2001 May 01; 198(2):111-5. PubMed ID: 11430399 [Abstract] [Full Text] [Related]
5. An extreme halophilic enzyme active at low salt in reversed micelles. Marhuenda-Egea FC, Piera-Velázquez S, Cadenas C, Cadenas E. J Biotechnol; 2002 Feb 14; 93(2):159-64. PubMed ID: 11738722 [Abstract] [Full Text] [Related]
6. Increased stability of malate dehydrogenase from Halobacterium salinarum at low salt concentration in reverse micelles. Piera-Velázquez S, Marhuenda-Egea F, Cadenas E. Extremophiles; 2002 Oct 14; 6(5):407-12. PubMed ID: 12382117 [Abstract] [Full Text] [Related]
7. Kinetics of the alkaline phosphatase catalyzed hydrolysis of disodium p-nitrophenyl phosphate: effects of carbohydrate additives, low temperature, and freezing. Terefe NS, Arimi JM, Van Loey A, Hendrickx M. Biotechnol Prog; 2004 Oct 14; 20(5):1467-78. PubMed ID: 15458332 [Abstract] [Full Text] [Related]
8. A simple-potentiometric method for determination of acid and alkaline phosphatase enzymes in biological fluids and dairy products using a nitrophenylphosphate plastic membrane sensor. Hassan SS, Sayour HE, Kamel AH. Anal Chim Acta; 2009 Apr 27; 640(1-2):75-81. PubMed ID: 19362623 [Abstract] [Full Text] [Related]
9. Structural and biochemical characterization of a halophilic archaeal alkaline phosphatase. Wende A, Johansson P, Vollrath R, Dyall-Smith M, Oesterhelt D, Grininger M. J Mol Biol; 2010 Jul 02; 400(1):52-62. PubMed ID: 20438737 [Abstract] [Full Text] [Related]
10. Reverse micelles in organic solvents: a medium for the biotechnological use of extreme halophilic enzymes at low salt concentration. Marhuenda-Egea FC, Piera-Velázquez S, Cadenas C, Cadenas E. Archaea; 2002 Sep 02; 1(2):105-11. PubMed ID: 15803648 [Abstract] [Full Text] [Related]
11. Supermolecule density functional calculations suggest a key role for solvent in alkaline hydrolysis of p-nitrophenyl phosphate. Zhang L, Xie D, Xu D, Guo H. Chem Commun (Camb); 2007 Apr 28; (16):1638-40. PubMed ID: 17530085 [Abstract] [Full Text] [Related]
12. [Kinetics of inactivation of calf intestine alkaline phosphatase by EDTA with absorption spectrum method]. Wang JY, Peng XJ, Yang D, An LJ, Hu JH, Zheng XF. Guang Pu Xue Yu Guang Pu Fen Xi; 2001 Oct 28; 21(5):701-3. PubMed ID: 12945337 [Abstract] [Full Text] [Related]
13. Involvement of thiol groups in the reaction mechanism of Mn(2+)-activated alkaline p-nitrophenylphosphate phosphatase of the extreme halophilic archaebacterium Halobacterium halobium. Bonet ML, Llorca FI, Cadenas E. Biochem Int; 1992 Dec 28; 28(4):633-41. PubMed ID: 1336386 [Abstract] [Full Text] [Related]
14. Phosphate monoester hydrolysis by trinuclear alkaline phosphatase; DFT study of transition States and reaction mechanism. Chen SL, Liao RZ. Chemphyschem; 2014 Aug 04; 15(11):2321-30. PubMed ID: 24683174 [Abstract] [Full Text] [Related]
15. Kinetic behaviour of calf intestinal alkaline phosphatase with pNPP. Chaudhuri G, Chatterjee S, Venu-Babu P, Ramasamy K, Thilagaraj WR. Indian J Biochem Biophys; 2013 Feb 04; 50(1):64-71. PubMed ID: 23617076 [Abstract] [Full Text] [Related]
16. Structure of a halophilic nucleoside diphosphate kinase from Halobacterium salinarum. Besir H, Zeth K, Bracher A, Heider U, Ishibashi M, Tokunaga M, Oesterhelt D. FEBS Lett; 2005 Dec 05; 579(29):6595-600. PubMed ID: 16293253 [Abstract] [Full Text] [Related]
17. Theoretical comparison of p-nitrophenyl phosphate and sulfate hydrolysis in aqueous solution: implications for enzyme-catalyzed sulfuryl transfer. Kamerlin SC. J Org Chem; 2011 Nov 18; 76(22):9228-38. PubMed ID: 21981415 [Abstract] [Full Text] [Related]
18. Reaction rate modeling in cryoconcentrated solutions: alkaline phosphatase catalyzed DNPP hydrolysis. Champion D, Blond G, Le Meste M, Simatos D. J Agric Food Chem; 2000 Oct 18; 48(10):4942-7. PubMed ID: 11052760 [Abstract] [Full Text] [Related]
19. Effect of molecular surface packing on the enzymatic activity modulation of an anchored protein on phospholipid Langmuir monolayers. Caseli L, Oliveira RG, Masui DC, Furriel RP, Leone FA, Maggio B, Zaniquelli ME. Langmuir; 2005 Apr 26; 21(9):4090-5. PubMed ID: 15835979 [Abstract] [Full Text] [Related]
20. Mutation of Arg-166 of alkaline phosphatase alters the thio effect but not the transition state for phosphoryl transfer. Implications for the interpretation of thio effects in reactions of phosphatases. Holtz KM, Catrina IE, Hengge AC, Kantrowitz ER. Biochemistry; 2000 Aug 08; 39(31):9451-8. PubMed ID: 10924140 [Abstract] [Full Text] [Related] Page: [Next] [New Search]