These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Identification of human CYP2C19 residues that confer S-mephenytoin 4'-hydroxylation activity to CYP2C9. Tsao CC, Wester MR, Ghanayem B, Coulter SJ, Chanas B, Johnson EF, Goldstein JA. Biochemistry; 2001 Feb 20; 40(7):1937-44. PubMed ID: 11329260 [Abstract] [Full Text] [Related]
3. Identification of residues 286 and 289 as critical for conferring substrate specificity of human CYP2C9 for diclofenac and ibuprofen. Klose TS, Ibeanu GC, Ghanayem BI, Pedersen LG, Li L, Hall SD, Goldstein JA. Arch Biochem Biophys; 1998 Sep 15; 357(2):240-8. PubMed ID: 9735164 [Abstract] [Full Text] [Related]
5. Characterization of CYP2C19 and CYP2C9 from human liver: respective roles in microsomal tolbutamide, S-mephenytoin, and omeprazole hydroxylations. Lasker JM, Wester MR, Aramsombatdee E, Raucy JL. Arch Biochem Biophys; 1998 May 01; 353(1):16-28. PubMed ID: 9578596 [Abstract] [Full Text] [Related]
6. CYP2C19 participates in tolbutamide hydroxylation by human liver microsomes. Wester MR, Lasker JM, Johnson EF, Raucy JL. Drug Metab Dispos; 2000 Mar 01; 28(3):354-9. PubMed ID: 10681382 [Abstract] [Full Text] [Related]
8. Identification of residues 99, 220, and 221 of human cytochrome P450 2C19 as key determinants of omeprazole activity. Ibeanu GC, Ghanayem BI, Linko P, Li L, Pederson LG, Goldstein JA. J Biol Chem; 1996 May 24; 271(21):12496-501. PubMed ID: 8647857 [Abstract] [Full Text] [Related]
9. Metabolism of (+)- and (-)-limonenes to respective carveols and perillyl alcohols by CYP2C9 and CYP2C19 in human liver microsomes. Miyazawa M, Shindo M, Shimada T. Drug Metab Dispos; 2002 May 24; 30(5):602-7. PubMed ID: 11950794 [Abstract] [Full Text] [Related]
10. Chlorpropamide 2-hydroxylation is catalysed by CYP2C9 and CYP2C19 in vitro: chlorpropamide disposition is influenced by CYP2C9, but not by CYP2C19 genetic polymorphism. Shon JH, Yoon YR, Kim MJ, Kim KA, Lim YC, Liu KH, Shin DH, Lee CH, Cha IJ, Shin JG. Br J Clin Pharmacol; 2005 May 24; 59(5):552-63. PubMed ID: 15842554 [Abstract] [Full Text] [Related]
11. Studies of binding modes of (S)-mephenytoin to wild types and mutants of cytochrome P450 2C19 and 2C9 using homology modeling and computational docking. Oda A, Yamaotsu N, Hirono S. Pharm Res; 2004 Dec 24; 21(12):2270-8. PubMed ID: 15648259 [Abstract] [Full Text] [Related]
16. Identification of the polymorphically expressed CYP2C19 and the wild-type CYP2C9-ILE359 allele as low-Km catalysts of cyclophosphamide and ifosfamide activation. Chang TK, Yu L, Goldstein JA, Waxman DJ. Pharmacogenetics; 1997 Jun 22; 7(3):211-21. PubMed ID: 9241661 [Abstract] [Full Text] [Related]
17. Roles of CYP3A4 and CYP2C19 in methyl hydroxylated and N-oxidized metabolite formation from voriconazole, a new anti-fungal agent, in human liver microsomes. Murayama N, Imai N, Nakane T, Shimizu M, Yamazaki H. Biochem Pharmacol; 2007 Jun 15; 73(12):2020-6. PubMed ID: 17433262 [Abstract] [Full Text] [Related]
18. Important amino acid residues that confer CYP2C19 selective activity to CYP2C9. Wada Y, Mitsuda M, Ishihara Y, Watanabe M, Iwasaki M, Asahi S. J Biochem; 2008 Sep 15; 144(3):323-33. PubMed ID: 18511451 [Abstract] [Full Text] [Related]