These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


150 related items for PubMed ID: 12132435

  • 1. Influence of rapid changes in cytosolic pH on oxidative phosphorylation in skeletal muscle: theoretical studies.
    Korzeniewski B, Zoladz JA.
    Biochem J; 2002 Jul 01; 365(Pt 1):249-58. PubMed ID: 12132435
    [Abstract] [Full Text] [Related]

  • 2. Factors determining the oxygen consumption rate (VO2) on-kinetics in skeletal muscles.
    Korzeniewski B, Zoladz JA.
    Biochem J; 2004 May 01; 379(Pt 3):703-10. PubMed ID: 14744260
    [Abstract] [Full Text] [Related]

  • 3. A model of oxidative phosphorylation in mammalian skeletal muscle.
    Korzeniewski B, Zoladz JA.
    Biophys Chem; 2001 Aug 30; 92(1-2):17-34. PubMed ID: 11527576
    [Abstract] [Full Text] [Related]

  • 4. Theoretical studies on the regulation of anaerobic glycolysis and its influence on oxidative phosphorylation in skeletal muscle.
    Korzeniewski B, Liguzinski P.
    Biophys Chem; 2004 Jul 01; 110(1-2):147-69. PubMed ID: 15223151
    [Abstract] [Full Text] [Related]

  • 5. Possible mechanisms underlying slow component of V̇O2 on-kinetics in skeletal muscle.
    Korzeniewski B, Zoladz JA.
    J Appl Physiol (1985); 2015 May 15; 118(10):1240-9. PubMed ID: 25767031
    [Abstract] [Full Text] [Related]

  • 6. Each-step activation of oxidative phosphorylation is necessary to explain muscle metabolic kinetic responses to exercise and recovery in humans.
    Korzeniewski B, Rossiter HB.
    J Physiol; 2015 Dec 15; 593(24):5255-68. PubMed ID: 26503399
    [Abstract] [Full Text] [Related]

  • 7. Regulation of oxidative phosphorylation in different muscles and various experimental conditions.
    Korzeniewski B.
    Biochem J; 2003 Nov 01; 375(Pt 3):799-804. PubMed ID: 12901719
    [Abstract] [Full Text] [Related]

  • 8. Interrelations of ATP synthesis and proton handling in ischaemically exercising human forearm muscle studied by 31P magnetic resonance spectroscopy.
    Kemp GJ, Roussel M, Bendahan D, Le Fur Y, Cozzone PJ.
    J Physiol; 2001 Sep 15; 535(Pt 3):901-28. PubMed ID: 11559784
    [Abstract] [Full Text] [Related]

  • 9. Faster and stronger manifestation of mitochondrial diseases in skeletal muscle than in heart related to cytosolic inorganic phosphate (Pi) accumulation.
    Korzeniewski B.
    J Appl Physiol (1985); 2016 Aug 01; 121(2):424-37. PubMed ID: 27283913
    [Abstract] [Full Text] [Related]

  • 10. Biochemical background of the VO2 on-kinetics in skeletal muscles.
    Korzeniewski B, Zoladz JA.
    J Physiol Sci; 2006 Feb 01; 56(1):1-12. PubMed ID: 16779908
    [Abstract] [Full Text] [Related]

  • 11. Reduced cytosolic acidification during exercise suggests defective glycolytic activity in skeletal muscle of patients with Becker muscular dystrophy. An in vivo 31P magnetic resonance spectroscopy study.
    Lodi R, Kemp GJ, Muntoni F, Thompson CH, Rae C, Taylor J, Styles P, Taylor DJ.
    Brain; 1999 Jan 01; 122 ( Pt 1)():121-30. PubMed ID: 10050900
    [Abstract] [Full Text] [Related]

  • 12. Linear relation between time constant of oxygen uptake kinetics, total creatine, and mitochondrial content in vitro.
    Glancy B, Barstow T, Willis WT.
    Am J Physiol Cell Physiol; 2008 Jan 01; 294(1):C79-87. PubMed ID: 17942641
    [Abstract] [Full Text] [Related]

  • 13. Role of NADH/NAD+ transport activity and glycogen store on skeletal muscle energy metabolism during exercise: in silico studies.
    Li Y, Dash RK, Kim J, Saidel GM, Cabrera ME.
    Am J Physiol Cell Physiol; 2009 Jan 01; 296(1):C25-46. PubMed ID: 18829894
    [Abstract] [Full Text] [Related]

  • 14. Age-related changes in ATP-producing pathways in human skeletal muscle in vivo.
    Lanza IR, Befroy DE, Kent-Braun JA.
    J Appl Physiol (1985); 2005 Nov 01; 99(5):1736-44. PubMed ID: 16002769
    [Abstract] [Full Text] [Related]

  • 15. Interactions of mitochondrial ATP synthesis and the creatine kinase equilibrium in skeletal muscle.
    Kemp GJ.
    J Theor Biol; 1994 Oct 07; 170(3):239-46. PubMed ID: 7996853
    [Abstract] [Full Text] [Related]

  • 16. The electrochemical transmission in I-Band segments of the mitochondrial reticulum.
    Patel KD, Glancy B, Balaban RS.
    Biochim Biophys Acta; 2016 Aug 07; 1857(8):1284-1289. PubMed ID: 26921810
    [Abstract] [Full Text] [Related]

  • 17. Theoretical modelling of some spatial and temporal aspects of the mitochondrion/creatine kinase/myofibril system in muscle.
    Kemp GJ, Manners DN, Clark JF, Bastin ME, Radda GK.
    Mol Cell Biochem; 1998 Jul 07; 184(1-2):249-89. PubMed ID: 9746325
    [Abstract] [Full Text] [Related]

  • 18. Training-induced acceleration of oxygen uptake kinetics in skeletal muscle: the underlying mechanisms.
    Zoladz JA, Korzeniewski B, Grassi B.
    J Physiol Pharmacol; 2006 Nov 07; 57 Suppl 10():67-84. PubMed ID: 17242492
    [Abstract] [Full Text] [Related]

  • 19. Regulation of ATP supply during muscle contraction: theoretical studies.
    Korzeniewski B.
    Biochem J; 1998 Mar 15; 330 ( Pt 3)(Pt 3):1189-95. PubMed ID: 9494084
    [Abstract] [Full Text] [Related]

  • 20. Glycolysis is independent of oxygenation state in stimulated human skeletal muscle in vivo.
    Conley KE, Kushmerick MJ, Jubrias SA.
    J Physiol; 1998 Sep 15; 511 ( Pt 3)(Pt 3):935-45. PubMed ID: 9714871
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.