These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


154 related items for PubMed ID: 12140278

  • 1. Identification and expression of a cDNA encoding human alpha-amino-beta-carboxymuconate-epsilon-semialdehyde decarboxylase (ACMSD). A key enzyme for the tryptophan-niacine pathway and "quinolinate hypothesis".
    Fukuoka S, Ishiguro K, Yanagihara K, Tanabe A, Egashira Y, Sanada H, Shibata K.
    J Biol Chem; 2002 Sep 20; 277(38):35162-7. PubMed ID: 12140278
    [Abstract] [Full Text] [Related]

  • 2. Identification and expression of alpha cDNA encoding human 2-amino-3-carboxymuconate-6-semialdehyde decarboxylase (ACMSD): a key enzyme for the tryptophan-niacine pathway and quinolinate hypothesis.
    Fukuoka S, Ishiguro K, Tanabe A, Egashira Y, Sanada H, Fukuwatari T, Shibata K.
    Adv Exp Med Biol; 2003 Sep 20; 527():443-53. PubMed ID: 15206762
    [Abstract] [Full Text] [Related]

  • 3. Tissue expression and biochemical characterization of human 2-amino 3-carboxymuconate 6-semialdehyde decarboxylase, a key enzyme in tryptophan catabolism.
    Pucci L, Perozzi S, Cimadamore F, Orsomando G, Raffaelli N.
    FEBS J; 2007 Feb 20; 274(3):827-40. PubMed ID: 17288562
    [Abstract] [Full Text] [Related]

  • 4. Phthalate esters enhance quinolinate production by inhibiting alpha-amino-beta-carboxymuconate-epsilon-semialdehyde decarboxylase (ACMSD), a key enzyme of the tryptophan pathway.
    Fukuwatari T, Ohsaki S, Fukuoka S, Sasaki R, Shibata K.
    Toxicol Sci; 2004 Oct 20; 81(2):302-8. PubMed ID: 15229365
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Effect of high-protein diet on liver alpha-amino-beta-carboxymuconate-epsilon-semialdehyde decarboxylase in rats.
    Sanada H, Miyazaki M.
    J Nutr Sci Vitaminol (Tokyo); 1984 Apr 20; 30(2):113-23. PubMed ID: 6147399
    [Abstract] [Full Text] [Related]

  • 7. Purification and molecular cloning of rat 2-amino-3-carboxymuconate-6-semialdehyde decarboxylase.
    Tanabe A, Egashira Y, Fukuoka S, Shibata K, Sanada H.
    Biochem J; 2002 Feb 01; 361(Pt 3):567-75. PubMed ID: 11802786
    [Abstract] [Full Text] [Related]

  • 8. Effect of dietary phytol on the expression of α-amino-β-carboxymuconate-ε-semialdehyde decarboxylase, a key enzyme of tryptophan-niacin metabolism, in rats.
    Matsuda H, Gomi RT, Hirai S, Egashira Y.
    Biosci Biotechnol Biochem; 2013 Feb 01; 77(7):1416-9. PubMed ID: 23832361
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Effects of dietary fat and protein on the activity of alpha-amino-beta-carboxymuconate-epsilon-semialdehyde decarboxylase and the urinary excretion of niacin metabolites in rats.
    Sanada H, Takahashi T, Miyazaki M.
    J Nutr Sci Vitaminol (Tokyo); 1991 Feb 01; 37(1):39-51. PubMed ID: 1880630
    [Abstract] [Full Text] [Related]

  • 12. Expression of rat hepatic 2-amino-3-carboxymuconate-6-semialdehyde decarboxylase is affected by a high protein diet and by streptozotocin-induced diabetes.
    Tanabe A, Egashira Y, Fukuoka S, Shibata K, Sanada H.
    J Nutr; 2002 Jun 01; 132(6):1153-9. PubMed ID: 12042425
    [Abstract] [Full Text] [Related]

  • 13. Differential effects of pyrazinamide and clofibrate on gene expression of rat hepatic alpha-amino-beta-carboxymuconate-epsilon-semialdehyde decarboxylase, a key enzyme of the tryptophan-NAD pathway.
    Egashira Y, Sato M, Sato M, Sugawara R, Tanabe A, Shin M, Sanada H.
    Int J Vitam Nutr Res; 2006 May 01; 76(3):138-46. PubMed ID: 17048193
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Suppressive effect of dietary unsaturated fatty acids on alpha-amino-beta-carboxymuconate-epsilon-semialdehyde decarboxylase, a key enzyme of tryptophan-niacin metabolism in rat liver.
    Sanada H.
    J Nutr Sci Vitaminol (Tokyo); 1985 Jun 01; 31(3):327-37. PubMed ID: 4067666
    [Abstract] [Full Text] [Related]

  • 16. Regulation of rat hepatic α-amino-β-carboxymuconate-ε-semialdehyde decarboxylase, a key enzyme in the tryptophan- NAD pathway, by dietary cholesterol and sterol regulatory element-binding protein-2.
    Matsuda H, Sato M, Yakushiji M, Koshiguchi M, Hirai S, Egashira Y.
    Eur J Nutr; 2014 Jun 01; 53(2):469-77. PubMed ID: 25289390
    [Abstract] [Full Text] [Related]

  • 17. Influence of adenine-induced renal failure on tryptophan-niacin metabolism in rats.
    Fukuwatari T, Morikawa Y, Hayakawa F, Sugimoto E, Shibata K.
    Biosci Biotechnol Biochem; 2001 Oct 01; 65(10):2154-61. PubMed ID: 11758903
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Regulation of mouse hepatic alpha-amino-beta-carboxymuconate-epsilon-semialdehyde decarboxylase, a key enzyme in the tryptophan-nicotinamide adenine dinucleotide pathway, by hepatocyte nuclear factor 4alpha and peroxisome proliferator-activated receptor alpha.
    Shin M, Kim I, Inoue Y, Kimura S, Gonzalez FJ.
    Mol Pharmacol; 2006 Oct 01; 70(4):1281-90. PubMed ID: 16807375
    [Abstract] [Full Text] [Related]

  • 20. Dietary protein level and dietary interaction affect quinolinic acid concentration in rats.
    Egashira Y, Sato M, Saito K, Sanada H.
    Int J Vitam Nutr Res; 2007 Mar 01; 77(2):142-8. PubMed ID: 17896587
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.