These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
129 related items for PubMed ID: 12145274
1. Novel mitochondrial creatine transport activity. Implications for intracellular creatine compartments and bioenergetics. Walzel B, Speer O, Zanolla E, Eriksson O, Bernardi P, Wallimann T. J Biol Chem; 2002 Oct 04; 277(40):37503-11. PubMed ID: 12145274 [Abstract] [Full Text] [Related]
2. Creatine transporters: a reappraisal. Speer O, Neukomm LJ, Murphy RM, Zanolla E, Schlattner U, Henry H, Snow RJ, Wallimann T. Mol Cell Biochem; 2004 Oct 04; 256-257(1-2):407-24. PubMed ID: 14977199 [Abstract] [Full Text] [Related]
3. Interaction of creatine kinase isoenzymes with beef heart mitochondrial membrane: a model for association of mitochondrial and cytoplasmic isoenzymes with inner membrane. Iyengar MR, Iyengar CL. Biochemistry; 1980 May 13; 19(10):2176-82. PubMed ID: 7378355 [No Abstract] [Full Text] [Related]
4. Creatine kinase of rat heart mitochondria. The demonstration of functional coupling to oxidative phosphorylation in an inner membrane-matrix preparation. Saks VA, Kuznetsov AV, Kupriyanov VV, Miceli MV, Jacobus WE. J Biol Chem; 1985 Jun 25; 260(12):7757-64. PubMed ID: 3997893 [Abstract] [Full Text] [Related]
5. Bcl-2 is located predominantly in the inner membrane and crista of mitochondria in rat liver. Motoyama S, Kitamura M, Saito S, Minamiya Y, Suzuki H, Saito R, Terada K, Ogawa J, Inaba H. Biochem Biophys Res Commun; 1998 Aug 28; 249(3):628-36. PubMed ID: 9731187 [Abstract] [Full Text] [Related]
6. Studies of energy transport in heart cells. The importance of creatine kinase localization for the coupling of mitochondrial phosphorylcreatine production to oxidative phosphorylation. Saks VA, Kupriyanov VV, Elizarova GV, Jacobus WE. J Biol Chem; 1980 Jan 25; 255(2):755-63. PubMed ID: 7356643 [No Abstract] [Full Text] [Related]
7. New creatine transporter assay and identification of distinct creatine transporter isoforms in muscle. Walzel B, Speer O, Boehm E, Kristiansen S, Chan S, Clarke K, Magyar JP, Richter EA, Wallimann T. Am J Physiol Endocrinol Metab; 2002 Aug 25; 283(2):E390-401. PubMed ID: 12110547 [Abstract] [Full Text] [Related]
8. Structure of paracrystalline arrays on outer membranes of rat-liver and rat-heart mitochondria. Mannella CA, Ribeiro A, Cognon B, D'Arcangelis D. J Struct Biol; 1992 Aug 25; 108(3):227-37. PubMed ID: 1476829 [Abstract] [Full Text] [Related]
9. Identification of a GTP-binding protein in the contact sites between inner and outer mitochondrial membranes. Lithgow T, Timms M, Høj PB, Hoogenraad NJ. Biochem Biophys Res Commun; 1991 Nov 14; 180(3):1453-9. PubMed ID: 1953790 [Abstract] [Full Text] [Related]
10. Subcellular distribution of imidazoline-guanidinium-receptive sites in human and rabbit liver. Major localization to the mitochondrial outer membrane. Tesson F, Prip-Buus C, Lemoine A, Pegorier JP, Parini A. J Biol Chem; 1991 Jan 05; 266(1):155-60. PubMed ID: 1845963 [Abstract] [Full Text] [Related]
11. Mitochondrial boundary membrane contact sites in brain: points of hexokinase and creatine kinase location, and control of Ca2+ transport. Kottke M, Adam V, Riesinger I, Bremm G, Bosch W, Brdiczka D, Sandri G, Panfili E. Biochim Biophys Acta; 1988 Aug 17; 935(1):87-102. PubMed ID: 2457393 [Abstract] [Full Text] [Related]
12. Heart mitochondrial creatine kinase revisited: the outer mitochondrial membrane is not important for coupling of phosphocreatine production to oxidative phosphorylation. Kuznetsov AV, Khuchua ZA, Vassil'eva EV, Medved'eva NV, Saks VA. Arch Biochem Biophys; 1989 Jan 17; 268(1):176-90. PubMed ID: 2912374 [Abstract] [Full Text] [Related]
13. Use of sulfhydryl reagents to investigate branched chain alpha-keto acid transport in mitochondria. Drown PM, Torres N, Tovar AR, Davoodi J, Hutson SM. Biochim Biophys Acta; 2000 Sep 29; 1468(1-2):273-84. PubMed ID: 11018671 [Abstract] [Full Text] [Related]
14. [Induction of hydrogen ion transport in mitochondrial membranes]. Sharyshev AA, Novogorodov SA, Iaguzhinskiĭ LS. Biofizika; 1982 Sep 29; 27(1):52-7. PubMed ID: 7066402 [Abstract] [Full Text] [Related]
15. [Submitochondrial distribution of cAMP during incubation with rat liver mitochondria]. Kulinskiĭ VI, Zobova NV. Biokhimiia; 1985 Sep 29; 50(9):1546-52. PubMed ID: 2996639 [Abstract] [Full Text] [Related]
16. Purified and protein-loaded mitochondrial outer membrane vesicles for functional analysis of preprotein transport. Mayer A, Driessen A, Neupert W, Lill R. Methods Enzymol; 1995 Sep 29; 260():252-63. PubMed ID: 8592450 [No Abstract] [Full Text] [Related]
17. Compartmentation of mitochondrial creatine phosphokinase. II. The importance of the outer mitochondrial membrane for mitochondrial compartmentation. Erickson-Viitanen S, Geiger PJ, Viitanen P, Bessman SP. J Biol Chem; 1982 Dec 10; 257(23):14405-11. PubMed ID: 7142218 [Abstract] [Full Text] [Related]
18. Mitochondrial superoxide anion production and release into intermembrane space. Han D, Antunes F, Daneri F, Cadenas E. Methods Enzymol; 2002 Dec 10; 349():271-80. PubMed ID: 11912916 [Abstract] [Full Text] [Related]
19. Characterization of the submitochondrial compartments: study of the site of synthesis of dolichol and dolichol-linked sugars. Ardail D, Louisot P, Levrat C. Biochem Biophys Res Commun; 1989 Nov 15; 164(3):1009-17. PubMed ID: 2590184 [Abstract] [Full Text] [Related]
20. Identification of a mitochondrial receptor complex required for recognition and membrane insertion of precursor proteins. Kiebler M, Pfaller R, Söllner T, Griffiths G, Horstmann H, Pfanner N, Neupert W. Nature; 1990 Dec 13; 348(6302):610-6. PubMed ID: 2174514 [Abstract] [Full Text] [Related] Page: [Next] [New Search]