These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
467 related items for PubMed ID: 12161649
1. Femtosecond infrared spectroscopy of bacteriorhodopsin chromophore isomerization. Herbst J, Heyne K, Diller R. Science; 2002 Aug 02; 297(5582):822-5. PubMed ID: 12161649 [Abstract] [Full Text] [Related]
2. Real-time spectroscopy of transition states in bacteriorhodopsin during retinal isomerization. Kobayashi T, Saito T, Ohtani H. Nature; 2001 Nov 29; 414(6863):531-4. PubMed ID: 11734850 [Abstract] [Full Text] [Related]
3. The trans-cis isomerization reaction dynamics in sensory rhodopsin II by femtosecond time-resolved midinfrared spectroscopy: chromophore and protein dynamics. Diller R, Jakober R, Schumann C, Peters F, Klare JP, Engelhard M. Biopolymers; 2006 Jul 29; 82(4):358-62. PubMed ID: 16475156 [Abstract] [Full Text] [Related]
4. Structural changes of pharaonis phoborhodopsin upon photoisomerization of the retinal chromophore: infrared spectral comparison with bacteriorhodopsin. Kandori H, Shimono K, Sudo Y, Iwamoto M, Shichida Y, Kamo N. Biochemistry; 2001 Aug 07; 40(31):9238-46. PubMed ID: 11478891 [Abstract] [Full Text] [Related]
5. Primary photoinduced protein response in bacteriorhodopsin and sensory rhodopsin II. Gross R, Wolf MM, Schumann C, Friedman N, Sheves M, Li L, Engelhard M, Trentmann O, Neuhaus HE, Diller R. J Am Chem Soc; 2009 Oct 21; 131(41):14868-78. PubMed ID: 19778046 [Abstract] [Full Text] [Related]
6. Sub-5-fs real-time spectroscopy of transition states in bacteriorhodopsin during retinal isomerization. Kobayashi T, Yabushita A, Saito T, Ohtani H, Tsuda M. Photochem Photobiol; 2007 Oct 21; 83(2):363-8. PubMed ID: 17132067 [Abstract] [Full Text] [Related]
7. Femtosecond primary events in bacteriorhodopsin and its retinal modified analogs: revision of commonly accepted interpretation of electronic spectra of transient intermediates in the bacteriorhodopsin photocycle. Abramczyk H. J Chem Phys; 2004 Jun 15; 120(23):11120-32. PubMed ID: 15268142 [Abstract] [Full Text] [Related]
8. Steric constraint in the primary photoproduct of an archaeal rhodopsin from regiospecific perturbation of C-D stretching vibration of the retinyl chromophore. Sudo Y, Furutani Y, Wada A, Ito M, Kamo N, Kandori H. J Am Chem Soc; 2005 Nov 23; 127(46):16036-7. PubMed ID: 16287285 [Abstract] [Full Text] [Related]
9. Formation of the early photoproduct lumi-R of cyanobacterial phytochrome cph1 observed by ultrafast mid-infrared spectroscopy. van Thor JJ, Ronayne KL, Towrie M. J Am Chem Soc; 2007 Jan 10; 129(1):126-32. PubMed ID: 17199291 [Abstract] [Full Text] [Related]
10. Structural changes in bacteriorhodopsin following retinal photoisomerization from the 13-cis form. Mizuide N, Shibata M, Friedman N, Sheves M, Belenky M, Herzfeld J, Kandori H. Biochemistry; 2006 Sep 05; 45(35):10674-81. PubMed ID: 16939219 [Abstract] [Full Text] [Related]
11. Assignment of the hydrogen-out-of-plane and -in-plane vibrations of the retinal chromophore in the K intermediate of pharaonis phoborhodopsin. Furutani Y, Sudo Y, Wada A, Ito M, Shimono K, Kamo N, Kandori H. Biochemistry; 2006 Oct 03; 45(39):11836-43. PubMed ID: 17002284 [Abstract] [Full Text] [Related]
12. Trp86 --> Phe replacement in bacteriorhodopsin affects a water molecule near Asp85 and light adaptation. Hatanaka M, Kashima R, Kandori H, Friedman N, Sheves M, Needleman R, Lanyi JK, Maeda A. Biochemistry; 1997 May 06; 36(18):5493-8. PubMed ID: 9154932 [Abstract] [Full Text] [Related]
13. FTIR spectroscopy of the K photointermediate of Neurospora rhodopsin: structural changes of the retinal, protein, and water molecules after photoisomerization. Furutani Y, Bezerra AG, Waschuk S, Sumii M, Brown LS, Kandori H. Biochemistry; 2004 Aug 03; 43(30):9636-46. PubMed ID: 15274618 [Abstract] [Full Text] [Related]
14. Structural change of threonine 89 upon photoisomerization in bacteriorhodopsin as revealed by polarized FTIR spectroscopy. Kandori H, Kinoshita N, Yamazaki Y, Maeda A, Shichida Y, Needleman R, Lanyi JK, Bizounok M, Herzfeld J, Raap J, Lugtenburg J. Biochemistry; 1999 Jul 27; 38(30):9676-83. PubMed ID: 10423246 [Abstract] [Full Text] [Related]
15. Partitioning of free energy gain between the photoisomerized retinal and the protein in bacteriorhodopsin. Dioumaev AK, Brown LS, Needleman R, Lanyi JK. Biochemistry; 1998 Jul 14; 37(28):9889-93. PubMed ID: 9665693 [Abstract] [Full Text] [Related]
16. Proton translocation by bacteriorhodopsin in the absence of substantial conformational changes. Tittor J, Paula S, Subramaniam S, Heberle J, Henderson R, Oesterhelt D. J Mol Biol; 2002 May 31; 319(2):555-65. PubMed ID: 12051928 [Abstract] [Full Text] [Related]
17. Direct observation of the femtosecond excited-state cis-trans isomerization in bacteriorhodopsin. Mathies RA, Brito Cruz CH, Pollard WT, Shank CV. Science; 1988 May 06; 240(4853):777-9. PubMed ID: 3363359 [Abstract] [Full Text] [Related]
18. Tuning of retinal twisting in bacteriorhodopsin controls the directionality of the early photocycle steps. Bondar AN, Fischer S, Suhai S, Smith JC. J Phys Chem B; 2005 Aug 11; 109(31):14786-8. PubMed ID: 16852870 [Abstract] [Full Text] [Related]
19. Ultrafast protein conformational alterations in bacteriorhodopsin and its locked analogue BR5.12. Gross R, Schumann C, Wolf MM, Herbst J, Diller R, Friedman N, Sheves M. J Phys Chem B; 2009 Jun 04; 113(22):7851-60. PubMed ID: 19422251 [Abstract] [Full Text] [Related]
20. Ultrafast photochemistry of light-adapted and dark-adapted bacteriorhodopsin: effects of the initial retinal configuration. Wand A, Friedman N, Sheves M, Ruhman S. J Phys Chem B; 2012 Sep 06; 116(35):10444-52. PubMed ID: 22329764 [Abstract] [Full Text] [Related] Page: [Next] [New Search]