These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


362 related items for PubMed ID: 12166855

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Use of anisotropic modelling in electrical impedance tomography: description of method and preliminary assessment of utility in imaging brain function in the adult human head.
    Abascal JF, Arridge SR, Atkinson D, Horesh R, Fabrizi L, De Lucia M, Horesh L, Bayford RH, Holder DS.
    Neuroimage; 2008 Nov 01; 43(2):258-68. PubMed ID: 18694835
    [Abstract] [Full Text] [Related]

  • 4. Solution of the inverse problem of magnetic induction tomography (MIT).
    Merwa R, Hollaus K, Brunner P, Scharfetter H.
    Physiol Meas; 2005 Apr 01; 26(2):S241-50. PubMed ID: 15798237
    [Abstract] [Full Text] [Related]

  • 5. An iterative Newton-Raphson method to solve the inverse admittivity problem.
    Edic PM, Isaacson D, Saulnier GJ, Jain H, Newell JC.
    IEEE Trans Biomed Eng; 1998 Jul 01; 45(7):899-908. PubMed ID: 9644899
    [Abstract] [Full Text] [Related]

  • 6. Electrical impedance tomography for piecewise constant domains using boundary element shape-based inverse solutions.
    Babaeizadeh S, Brooks DH.
    IEEE Trans Med Imaging; 2007 May 01; 26(5):637-47. PubMed ID: 17518058
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Solution of the inverse problem of magnetic induction tomography (MIT) with multiple objects: analysis of detectability and statistical properties with respect to the reconstructed conducting region.
    Merwa R, Brunner P, Missner A, Hollaus K, Scharfetter H.
    Physiol Meas; 2006 May 01; 27(5):S249-59. PubMed ID: 16636415
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Regularized reconstruction in electrical impedance tomography using a variance uniformization constraint.
    Cohen-Bacrie C, Goussard Y, Guardo R.
    IEEE Trans Med Imaging; 1997 Oct 01; 16(5):562-71. PubMed ID: 9368111
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Generation of anisotropic-smoothness regularization filters for EIT.
    Borsic A, Lionheart WR, McLeod CN.
    IEEE Trans Med Imaging; 2002 Jun 01; 21(6):579-87. PubMed ID: 12166853
    [Abstract] [Full Text] [Related]

  • 17. An image reconstruction algorithm for three-dimensional electrical impedance tomography.
    Le Hyaric A, Pidcock MK.
    IEEE Trans Biomed Eng; 2001 Feb 01; 48(2):230-5. PubMed ID: 11296879
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. The boundary element method in the forward and inverse problem of electrical impedance tomography.
    de Munck JC, Faes TJ, Heethaar RM.
    IEEE Trans Biomed Eng; 2000 Jun 01; 47(6):792-800. PubMed ID: 10833854
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 19.