These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Protection against cold in prehospital care: evaporative heat loss reduction by wet clothing removal or the addition of a vapor barrier--a thermal manikin study. Henriksson O, Lundgren P, Kuklane K, Holmér I, Naredi P, Bjornstig U. Prehosp Disaster Med; 2012 Feb; 27(1):53-8. PubMed ID: 22445055 [Abstract] [Full Text] [Related]
3. Protection against cold in prehospital care-thermal insulation properties of blankets and rescue bags in different wind conditions. Henriksson O, Lundgren JP, Kuklane K, Holmér I, Bjornstig U. Prehosp Disaster Med; 2009 Feb; 24(5):408-15. PubMed ID: 20066643 [Abstract] [Full Text] [Related]
4. Clothing resultant thermal insulation determined on a movable thermal manikin. Part I: effects of wind and body movement on total insulation. Lu Y, Wang F, Wan X, Song G, Shi W, Zhang C. Int J Biometeorol; 2015 Oct; 59(10):1475-86. PubMed ID: 25597033 [Abstract] [Full Text] [Related]
5. Theoretical analysis of three methods for calculating thermal insulation of clothing from thermal manikin. Huang J. Ann Occup Hyg; 2012 Jul; 56(6):728-35. PubMed ID: 22798547 [Abstract] [Full Text] [Related]
6. Non-evaporative effects of a wet mid layer on heat transfer through protective clothing. Bröde P, Havenith G, Wang X, Candas V, den Hartog EA, Griefahn B, Holmér I, Kuklane K, Meinander H, Nocker W, Richards M. Eur J Appl Physiol; 2008 Sep; 104(2):341-9. PubMed ID: 18084775 [Abstract] [Full Text] [Related]
7. Determination of clothing evaporative resistance on a sweating thermal manikin in an isothermal condition: heat loss method or mass loss method? Wang F, Gao C, Kuklane K, Holmér I. Ann Occup Hyg; 2011 Aug; 55(7):775-83. PubMed ID: 21669906 [Abstract] [Full Text] [Related]
8. Evaluating cold, wind, and moisture protection of different coverings for prehospital maritime transportation-a thermal manikin and human study. Jussila K, Rissanen S, Parkkola K, Anttonen Hannu. Prehosp Disaster Med; 2014 Dec; 29(6):580-8. PubMed ID: 25358397 [Abstract] [Full Text] [Related]
9. Thermal manikin measurements--exact or not? Anttonen H, Niskanen J, Meinander H, Bartels V, Kuklane K, Reinertsen RE, Varieras S, Sołtyński K. Int J Occup Saf Ergon; 2004 Dec; 10(3):291-300. PubMed ID: 15377413 [Abstract] [Full Text] [Related]
10. 3D quantification of microclimate volume in layered clothing for the prediction of clothing insulation. Lee Y, Hong K, Hong SA. Appl Ergon; 2007 May; 38(3):349-55. PubMed ID: 16756938 [Abstract] [Full Text] [Related]
11. Clothing resultant thermal insulation determined on a movable thermal manikin. Part II: effects of wind and body movement on local insulation. Lu Y, Wang F, Wan X, Song G, Zhang C, Shi W. Int J Biometeorol; 2015 Oct; 59(10):1487-98. PubMed ID: 25605409 [Abstract] [Full Text] [Related]
12. Effects of skin surface temperature distribution of thermal manikin on clothing thermal insulation. Takahashi-Nishimura M, Tanabe S, Hasebe Y. Appl Human Sci; 1997 Sep; 16(5):181-9. PubMed ID: 9431704 [Abstract] [Full Text] [Related]
13. Thermal insulation and evaporative resistance of football uniforms. McCullough EA, Kenney WL. Med Sci Sports Exerc; 2003 May; 35(5):832-7. PubMed ID: 12750594 [Abstract] [Full Text] [Related]
14. The influence of sweating on the heat transmission properties of cold protective clothing studied with a sweating thermal manikin. Meinander H, Hellsten M. Int J Occup Saf Ergon; 2004 May; 10(3):263-9. PubMed ID: 15377411 [Abstract] [Full Text] [Related]
15. Prediction of clothing thermal insulation and moisture vapour resistance of the clothed body walking in wind. Qian X, Fan J. Ann Occup Hyg; 2006 Nov; 50(8):833-42. PubMed ID: 16857703 [Abstract] [Full Text] [Related]
16. Comparison of Thermal Manikin Modeling and Human Subjects' Response During Use of Cooling Devices Under Personal Protective Ensembles in the Heat. Quinn T, Kim JH, Seo Y, Coca A. Prehosp Disaster Med; 2018 Jun; 33(3):279-287. PubMed ID: 29669616 [Abstract] [Full Text] [Related]
17. Measurements of clothing insulation with a thermal manikin operating under the thermal comfort regulation mode: comparative analysis of the calculation methods. Oliveira AV, Gaspar AR, Quintela DA. Eur J Appl Physiol; 2008 Nov; 104(4):679-88. PubMed ID: 18633635 [Abstract] [Full Text] [Related]
18. Effect of sweating set rate on clothing real evaporative resistance determined on a sweating thermal manikin in a so-called isothermal condition (T manikin = T a = T r). Lu Y, Wang F, Peng H, Shi W, Song G. Int J Biometeorol; 2016 Apr; 60(4):481-8. PubMed ID: 26150329 [Abstract] [Full Text] [Related]
19. Maximum sustainable work rate for five protective clothing ensembles with respect to moisture vapor transmission rate and air permeability. Gonzalez NW, Bernard TE, Carroll NL, Bryner MA, Zeigler JP. J Occup Environ Hyg; 2006 Feb; 3(2):80-6. PubMed ID: 16418081 [Abstract] [Full Text] [Related]
20. Occupational needs and evaluation methods for cold protective clothing. Anttonen H. Arctic Med Res; 1993 Feb; 52 Suppl 9():1-76. PubMed ID: 8048995 [Abstract] [Full Text] [Related] Page: [Next] [New Search]