These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


221 related items for PubMed ID: 12175334

  • 1. A catalytic consensus motif for D-mannitol 2-dehydrogenase, a member of a polyol-specific long-chain dehydrogenase family, revealed by kinetic characterization of site-directed mutants of the enzyme from Pseudomonas fluorescens.
    Klimacek M, Nidetzky B.
    Biochem J; 2002 Oct 01; 367(Pt 1):13-8. PubMed ID: 12175334
    [Abstract] [Full Text] [Related]

  • 2. On the role of Brønsted catalysis in Pseudomonas fluorescens mannitol 2-dehydrogenase.
    Klimacek M, Kavanagh KL, Wilson DK, Nidetzky B.
    Biochem J; 2003 Oct 01; 375(Pt 1):141-9. PubMed ID: 12826012
    [Abstract] [Full Text] [Related]

  • 3. The oxyanion hole of Pseudomonas fluorescens mannitol 2-dehydrogenase: a novel structural motif for electrostatic stabilization in alcohol dehydrogenase active sites.
    Klimacek M, Nidetzky B.
    Biochem J; 2009 Dec 23; 425(2):455-63. PubMed ID: 19857201
    [Abstract] [Full Text] [Related]

  • 4. Kinetic study of the catalytic mechanism of mannitol dehydrogenase from Pseudomonas fluorescens.
    Slatner M, Nidetzky B, Kulbe KD.
    Biochemistry; 1999 Aug 10; 38(32):10489-98. PubMed ID: 10441145
    [Abstract] [Full Text] [Related]

  • 5. Examining the relative timing of hydrogen abstraction steps during NAD(+)-dependent oxidation of secondary alcohols catalyzed by long-chain D-mannitol dehydrogenase from Pseudomonas fluorescens using pH and kinetic isotope effects.
    Klimacek M, Nidetzky B.
    Biochemistry; 2002 Aug 06; 41(31):10158-65. PubMed ID: 12146981
    [Abstract] [Full Text] [Related]

  • 6. Polyol-specific long-chain dehydrogenases/reductases of mannitol metabolism in Aspergillus fumigatus: biochemical characterization and pH studies of mannitol 2-dehydrogenase and mannitol-1-phosphate 5-dehydrogenase.
    Krahulec S, Armao GC, Bubner P, Klimacek M, Nidetzky B.
    Chem Biol Interact; 2009 Mar 16; 178(1-3):274-82. PubMed ID: 18983992
    [Abstract] [Full Text] [Related]

  • 7. Site-directed mutagenesis of histidine-90 in Escherichia coli L-threonine dehydrogenase alters its substrate specificity.
    Johnson AR, Dekker EE.
    Arch Biochem Biophys; 1998 Mar 01; 351(1):8-16. PubMed ID: 9500838
    [Abstract] [Full Text] [Related]

  • 8. Mannanase A from Pseudomonas fluorescens ssp. cellulosa is a retaining glycosyl hydrolase in which E212 and E320 are the putative catalytic residues.
    Bolam DN, Hughes N, Virden R, Lakey JH, Hazlewood GP, Henrissat B, Braithwaite KL, Gilbert HJ.
    Biochemistry; 1996 Dec 17; 35(50):16195-204. PubMed ID: 8973192
    [Abstract] [Full Text] [Related]

  • 9. Structure-guided engineering of the coenzyme specificity of Pseudomonas fluorescens mannitol 2-dehydrogenase to enable efficient utilization of NAD(H) and NADP(H).
    Bubner P, Klimacek M, Nidetzky B.
    FEBS Lett; 2008 Jan 23; 582(2):233-7. PubMed ID: 18082142
    [Abstract] [Full Text] [Related]

  • 10. Site-directed mutagenesis of active site residues of phosphite dehydrogenase.
    Woodyer R, Wheatley JL, Relyea HA, Rimkus S, van der Donk WA.
    Biochemistry; 2005 Mar 29; 44(12):4765-74. PubMed ID: 15779903
    [Abstract] [Full Text] [Related]

  • 11. From alcohol dehydrogenase to a "one-way" carbonyl reductase by active-site redesign: a mechanistic study of mannitol 2-dehydrogenase from pseudomonas fluorescens.
    Klimacek M, Nidetzky B.
    J Biol Chem; 2010 Oct 01; 285(40):30644-53. PubMed ID: 20639204
    [Abstract] [Full Text] [Related]

  • 12. Studies of the enzymic mechanism of Candida tenuis xylose reductase (AKR 2B5): X-ray structure and catalytic reaction profile for the H113A mutant.
    Kratzer R, Kavanagh KL, Wilson DK, Nidetzky B.
    Biochemistry; 2004 May 04; 43(17):4944-54. PubMed ID: 15109252
    [Abstract] [Full Text] [Related]

  • 13. Key NAD+-binding residues in human 15-hydroxyprostaglandin dehydrogenase.
    Cho H, Hamza A, Zhan CG, Tai HH.
    Arch Biochem Biophys; 2005 Jan 15; 433(2):447-53. PubMed ID: 15581601
    [Abstract] [Full Text] [Related]

  • 14. Pseudomonas fluorescens mannitol 2-dehydrogenase and the family of polyol-specific long-chain dehydrogenases/reductases: sequence-based classification and analysis of structure-function relationships.
    Klimacek M, Kavanagh KL, Wilson DK, Nidetzky B.
    Chem Biol Interact; 2003 Feb 01; 143-144():559-82. PubMed ID: 12604242
    [Abstract] [Full Text] [Related]

  • 15. Crystal structure of Pseudomonas fluorescens mannitol 2-dehydrogenase binary and ternary complexes. Specificity and catalytic mechanism.
    Kavanagh KL, Klimacek M, Nidetzky B, Wilson DK.
    J Biol Chem; 2002 Nov 08; 277(45):43433-42. PubMed ID: 12196534
    [Abstract] [Full Text] [Related]

  • 16. On the catalytic role of the conserved active site residue His466 of choline oxidase.
    Ghanem M, Gadda G.
    Biochemistry; 2005 Jan 25; 44(3):893-904. PubMed ID: 15654745
    [Abstract] [Full Text] [Related]

  • 17. Catalytic role for arginine 188 in the C-C hydrolase catalytic mechanism for Escherichia coli MhpC and Burkholderia xenovorans LB400 BphD.
    Li C, Li JJ, Montgomery MG, Wood SP, Bugg TD.
    Biochemistry; 2006 Oct 17; 45(41):12470-9. PubMed ID: 17029402
    [Abstract] [Full Text] [Related]

  • 18. Substrate-assisted movement of the catalytic Lys 215 during domain closure: site-directed mutagenesis studies of human 3-phosphoglycerate kinase.
    Flachner B, Varga A, Szabó J, Barna L, Hajdú I, Gyimesi G, Závodszky P, Vas M.
    Biochemistry; 2005 Dec 27; 44(51):16853-65. PubMed ID: 16363799
    [Abstract] [Full Text] [Related]

  • 19. Analysis of the catalytic mechanism of pyruvate dehydrogenase kinase.
    Tovar-Méndez A, Hirani TA, Miernyk JA, Randall DD.
    Arch Biochem Biophys; 2005 Feb 01; 434(1):159-68. PubMed ID: 15629119
    [Abstract] [Full Text] [Related]

  • 20. Probing the mechanism of hamster arylamine N-acetyltransferase 2 acetylation by active site modification, site-directed mutagenesis, and pre-steady state and steady state kinetic studies.
    Wang H, Vath GM, Gleason KJ, Hanna PE, Wagner CR.
    Biochemistry; 2004 Jun 29; 43(25):8234-46. PubMed ID: 15209520
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.