These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
110 related items for PubMed ID: 12197724
1. Concomitant C-ring Expansion and D-ring formation in lanosterol biosynthesis from squalene without violation of Markovnikov's rule. Hess BA. J Am Chem Soc; 2002 Sep 04; 124(35):10286-7. PubMed ID: 12197724 [Abstract] [Full Text] [Related]
2. Formation of the C ring in the lanosterol biosynthesis from squalene. Hess BA. Org Lett; 2003 Jan 23; 5(2):165-7. PubMed ID: 12529131 [Abstract] [Full Text] [Related]
3. Biosynthetic Mechanism of Lanosterol: Cyclization. Chen N, Wang S, Smentek L, Hess BA, Wu R. Angew Chem Int Ed Engl; 2015 Jul 20; 54(30):8693-6. PubMed ID: 26069216 [Abstract] [Full Text] [Related]
4. Lanosterol biosynthesis: the critical role of the methyl-29 group of 2,3-oxidosqualene for the correct folding of this substrate and for the construction of the five-membered D ring. Hoshino T, Chiba A, Abe N. Chemistry; 2012 Oct 08; 18(41):13108-16. PubMed ID: 22933236 [Abstract] [Full Text] [Related]
5. Balancing kinetic and thermodynamic control: the mechanism of carbocation cyclization by squalene cyclase. Rajamani R, Gao J. J Am Chem Soc; 2003 Oct 22; 125(42):12768-81. PubMed ID: 14558824 [Abstract] [Full Text] [Related]
6. Compelling computational evidence for the concerted cyclization of the ABC rings of hopene from protonated squalene. Smentek L, Hess BA. J Am Chem Soc; 2010 Dec 08; 132(48):17111-7. PubMed ID: 21080653 [Abstract] [Full Text] [Related]
7. New cyclization mechanism for squalene: a ring-expansion step for the five-membered C-ring intermediate in hopene biosynthesis. Hoshino T, Kouda M, Abe T, Ohashi S. Biosci Biotechnol Biochem; 1999 Nov 08; 63(11):2038-41. PubMed ID: 10635573 [Abstract] [Full Text] [Related]
8. Non-specific lanosterol and hopanoid biosynthesis be a cell-free system from the bacterium Methylococcus capsulatus. Rohmer M, Bouvier P, Ourisson G. Eur J Biochem; 1980 Dec 08; 112(3):557-60. PubMed ID: 6780348 [Abstract] [Full Text] [Related]
9. Do the substituent effects affect conformational freedom of squalene in hopene biosynthesis? Nowosielski M, Hoffmann M. J Mol Model; 2011 Sep 08; 17(9):2169-74. PubMed ID: 21562825 [Abstract] [Full Text] [Related]
10. Lanosterol biosynthesis in the prokaryote Methylococcus capsulatus: insight into the evolution of sterol biosynthesis. Lamb DC, Jackson CJ, Warrilow AG, Manning NJ, Kelly DE, Kelly SL. Mol Biol Evol; 2007 Aug 08; 24(8):1714-21. PubMed ID: 17567593 [Abstract] [Full Text] [Related]
11. Concerted nature of AB ring formation in the enzymatic cyclization of squalene to hopenes. Hess BA, Smentek L. Org Lett; 2004 May 27; 6(11):1717-20. PubMed ID: 15151397 [Abstract] [Full Text] [Related]
12. Supernatant protein factor, which stimulates the conversion of squalene to lanosterol, is a cytosolic squalene transfer protein and enhances cholesterol biosynthesis. Shibata N, Arita M, Misaki Y, Dohmae N, Takio K, Ono T, Inoue K, Arai H. Proc Natl Acad Sci U S A; 2001 Feb 27; 98(5):2244-9. PubMed ID: 11226224 [Abstract] [Full Text] [Related]
13. The binding of squalene by human placental cytosol: role in conversion of squalene to lanosterol. Astruc M, Tabacik C, Descomps B, Crastes de Paulet A. FEBS Lett; 1974 Oct 01; 47(1):66-71. PubMed ID: 4426400 [No Abstract] [Full Text] [Related]
14. Squalene, lanosterol and cholesterol synthesis from acetate in neonatal chick tissues. Linares A, Arce V, Aguilera JA, García-Peregrín E. Rev Esp Fisiol; 1984 Dec 01; 40(4):425-9. PubMed ID: 6531508 [Abstract] [Full Text] [Related]
15. Symmetry of squalene epoxidation in vivo. Cornforth J. Proc R Soc Lond B Biol Sci; 1977 Nov 14; 199(1135):213-30. PubMed ID: 22855 [No Abstract] [Full Text] [Related]
17. Insight into steroid scaffold formation from the structure of human oxidosqualene cyclase. Thoma R, Schulz-Gasch T, D'Arcy B, Benz J, Aebi J, Dehmlow H, Hennig M, Stihle M, Ruf A. Nature; 2004 Nov 04; 432(7013):118-22. PubMed ID: 15525992 [Abstract] [Full Text] [Related]
18. Sterol biosynthesis in the echinoderm Asterias rubens. Smith AG, Goad LJ. Biochem J; 1975 Jan 04; 146(1):25-33. PubMed ID: 1147897 [Abstract] [Full Text] [Related]