These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. A new family of satellite DNA sequences as a major component of centromeric heterochromatin in owls (Strigiformes). Yamada K, Nishida-Umehara C, Matsuda Y. Chromosoma; 2004 Mar; 112(6):277-87. PubMed ID: 14997323 [Abstract] [Full Text] [Related]
3. Cloning and characterization of a fish centromeric satellite DNA. Garrido-Ramos MA, Jamilena M, Lozano R, Ruiz Rejón C, Ruiz Rejón M. Cytogenet Cell Genet; 1994 Mar; 65(4):233-7. PubMed ID: 8258296 [Abstract] [Full Text] [Related]
5. Heterochromatin heterogeneity and chromosome variability in four species of gobiid fishes (Perciformes:Gobiidae). Caputo V, Marchegiani F, Sorice M, Olmo E. Cytogenet Cell Genet; 1997 Mar; 79(3-4):266-71. PubMed ID: 9605868 [Abstract] [Full Text] [Related]
6. Direct visualization of the genomic distribution and organization of two cervid centromeric satellite DNA families. Li YC, Lee C, Hseu TH, Li SY, Lin CC. Cytogenet Cell Genet; 2000 Mar; 89(3-4):192-8. PubMed ID: 10965121 [Abstract] [Full Text] [Related]
7. Centromeric heterochromatin and satellite DNA in the Chironomus plumosus species group. Hankeln T, Fillippova MA, Kiknadze II, Aimanova KG, Schmidt ER. Genome; 1994 Dec; 37(6):925-34. PubMed ID: 7828840 [Abstract] [Full Text] [Related]
8. Centromeric heterochromatin in the cattle rob(1;29) translocation: alpha-satellite I sequences, in-situ MspI digestion patterns, chromomycin staining and C-bands. Chaves R, Heslop-Harrsion JS, Guedes-Pinto H. Chromosome Res; 2000 Dec; 8(7):621-6. PubMed ID: 11117358 [Abstract] [Full Text] [Related]
10. Molecular characterization of a centromeric satellite DNA in the hemiclonal hybrid frog Rana esculenta and its parental species. Ragghianti M, Guerrini F, Bucci S, Mancino G, Hotz H, Uzzell T, Guex GD. Chromosome Res; 1995 Dec; 3(8):497-506. PubMed ID: 8581303 [Abstract] [Full Text] [Related]
11. Dodeca satellite: a conserved G+C-rich satellite from the centromeric heterochromatin of Drosophila melanogaster. Abad JP, Carmena M, Baars S, Saunders RD, Glover DM, Ludeña P, Sentis C, Tyler-Smith C, Villasante A. Proc Natl Acad Sci U S A; 1992 May 15; 89(10):4663-7. PubMed ID: 1584802 [Abstract] [Full Text] [Related]
12. Sequence Analysis and FISH Mapping of Four Satellite DNA Families among Cervidae. Vozdova M, Kubickova S, Cernohorska H, Fröhlich J, Martínková N, Rubes J. Genes (Basel); 2020 May 24; 11(5):. PubMed ID: 32456268 [Abstract] [Full Text] [Related]
13. Molecular structures of centromeric heterochromatin and karyotypic evolution in the Siamese crocodile (Crocodylus siamensis) (Crocodylidae, Crocodylia). Kawagoshi T, Nishida C, Ota H, Kumazawa Y, Endo H, Matsuda Y. Chromosome Res; 2008 May 24; 16(8):1119-32. PubMed ID: 18941916 [Abstract] [Full Text] [Related]
14. HeT-A telomere-specific retrotransposons in the centric heterochromatin of Drosophila melanogaster chromosome 3. Losada A, Agudo M, Abad JP, Villasante A. Mol Gen Genet; 1999 Dec 24; 262(4-5):618-22. PubMed ID: 10628844 [Abstract] [Full Text] [Related]
15. Isolation and characterization of salmonid telomeric and centromeric satellite DNA sequences. Saito Y, Edpalina RR, Abe S. Genetica; 2007 Oct 24; 131(2):157-66. PubMed ID: 17180439 [Abstract] [Full Text] [Related]
16. Satellite DNA and heterochromatin of the flour beetle Tribolium confusum. Plohl M, Lucijanić-Justić V, Ugarković D, Petitpierre E, Juan C. Genome; 1993 Jun 24; 36(3):467-75. PubMed ID: 7688707 [Abstract] [Full Text] [Related]
17. Human (Homo sapiens) and chimpanzee (Pan troglodytes) share similar ancestral centromeric alpha satellite DNA sequences but other fractions of heterochromatin differ considerably. Luke S, Verma RS. Am J Phys Anthropol; 1995 Jan 24; 96(1):63-71. PubMed ID: 7726296 [Abstract] [Full Text] [Related]
18. Application of cloned satellite DNA sequences to molecular-cytogenetic analysis of constitutive heterochromatin heteromorphisms in man. Yurov YB, Mitkevich SP, Alexandrov IA. Hum Genet; 1987 Jun 24; 76(2):157-64. PubMed ID: 3475246 [Abstract] [Full Text] [Related]
19. A human chromosome 9-specific alphoid DNA repeat spatially resolvable from satellite 3 DNA by fluorescent in situ hybridization. Rocchi M, Archidiacono N, Ward DC, Baldini A. Genomics; 1991 Mar 24; 9(3):517-23. PubMed ID: 1840567 [Abstract] [Full Text] [Related]
20. Cytogenetic analysis of the tamaraw (Bubalus mindorensis): a comparison of R-banded karyotype and chromosomal distribution of centromeric satellite DNAs, telomeric sequence, and 18S-28S rRNA genes with domestic water buffaloes. Tanaka K, Matsuda Y, Masangkay JS, Solis CD, Anunciado RV, Kuro-o M, Namikawa T. J Hered; 2000 Mar 24; 91(2):117-21. PubMed ID: 10768124 [Abstract] [Full Text] [Related] Page: [Next] [New Search]