These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


364 related items for PubMed ID: 12203818

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Fifteen observations on the structure of energy-minimizing gaits in many simple biped models.
    Srinivasan M.
    J R Soc Interface; 2011 Jan 06; 8(54):74-98. PubMed ID: 20542957
    [Abstract] [Full Text] [Related]

  • 4. Gait selection in the ostrich: mechanical and metabolic characteristics of walking and running with and without an aerial phase.
    Rubenson J, Heliams DB, Lloyd DG, Fournier PA.
    Proc Biol Sci; 2004 May 22; 271(1543):1091-9. PubMed ID: 15293864
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Gait-specific metabolic costs and preferred speeds in ring-tailed lemurs (Lemur catta), with implications for the scaling of locomotor costs.
    O'Neill MC.
    Am J Phys Anthropol; 2012 Nov 22; 149(3):356-64. PubMed ID: 22976581
    [Abstract] [Full Text] [Related]

  • 7. A model of bipedal locomotion on compliant legs.
    Alexander RM.
    Philos Trans R Soc Lond B Biol Sci; 1992 Oct 29; 338(1284):189-98. PubMed ID: 1360684
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Walking, running, and resting under time, distance, and average speed constraints: optimality of walk-run-rest mixtures.
    Long LL, Srinivasan M.
    J R Soc Interface; 2013 Apr 06; 10(81):20120980. PubMed ID: 23365192
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Energy cost and lower leg muscle activities during erect bipedal locomotion under hyperoxia.
    Abe D, Fukuoka Y, Maeda T, Horiuchi M.
    J Physiol Anthropol; 2018 Jun 19; 37(1):18. PubMed ID: 29914562
    [Abstract] [Full Text] [Related]

  • 12. The optimal locomotion on gradients: walking, running or cycling?
    Ardigò LP, Saibene F, Minetti AE.
    Eur J Appl Physiol; 2003 Oct 19; 90(3-4):365-71. PubMed ID: 12898263
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Biomechanical and physiological aspects of legged locomotion in humans.
    Saibene F, Minetti AE.
    Eur J Appl Physiol; 2003 Jan 19; 88(4-5):297-316. PubMed ID: 12527959
    [Abstract] [Full Text] [Related]

  • 15. Preferred and energetically optimal gait transition speeds in human locomotion.
    Hreljac A.
    Med Sci Sports Exerc; 1993 Oct 19; 25(10):1158-62. PubMed ID: 8231761
    [Abstract] [Full Text] [Related]

  • 16. Energy cost of walking and running at extreme uphill and downhill slopes.
    Minetti AE, Moia C, Roi GS, Susta D, Ferretti G.
    J Appl Physiol (1985); 2002 Sep 19; 93(3):1039-46. PubMed ID: 12183501
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Energy cost and stride duration variability at preferred transition gait speed between walking and running.
    Brisswalter J, Mottet D.
    Can J Appl Physiol; 1996 Dec 19; 21(6):471-80. PubMed ID: 8959313
    [Abstract] [Full Text] [Related]

  • 19. Walking and running in the red-legged running frog, Kassina maculata.
    Ahn AN, Furrow E, Biewener AA.
    J Exp Biol; 2004 Jan 19; 207(Pt 3):399-410. PubMed ID: 14691087
    [Abstract] [Full Text] [Related]

  • 20. The transition between walking and running in humans: metabolic and mechanical aspects at different gradients.
    Minetti AE, Ardigò LP, Saibene F.
    Acta Physiol Scand; 1994 Mar 19; 150(3):315-23. PubMed ID: 8010138
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 19.