These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


136 related items for PubMed ID: 12209773

  • 1. Biodegradation of gasoline by gellan gum-encapsulated bacterial cells.
    Moslemy P, Neufeld RJ, Guiot SR.
    Biotechnol Bioeng; 2002 Oct 20; 80(2):175-84. PubMed ID: 12209773
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Enhanced biodegradation of hydrocarbons by Pseudomonas aeruginosa-encapsulated alginate/gellan gum microbeads.
    Park H, Kim H, Kim GY, Lee MY, Kim Y, Kang S.
    J Hazard Mater; 2021 Mar 15; 406():124752. PubMed ID: 33316667
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Biostimulation and bioaugmentation for on-site treatment of weathered diesel fuel in Arctic soil.
    Thomassin-Lacroix EJ, Eriksson M, Reimer KJ, Mohn WW.
    Appl Microbiol Biotechnol; 2002 Aug 15; 59(4-5):551-6. PubMed ID: 12172625
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Transport of gellan gum microbeads through sand: an experimental evaluation for encapsulated cell bioaugmentation.
    Moslemy P, Neufeld RJ, Millette D, Guiot SR.
    J Environ Manage; 2003 Nov 15; 69(3):249-59. PubMed ID: 14580726
    [Abstract] [Full Text] [Related]

  • 13. Hydrocarbon biodegradation in oxygen-limited sequential batch reactors by consortium from weathered, oil-contaminated soil.
    Medina-Moreno SA, Huerta-Ochoa S, Gutiérrez-Rojas M.
    Can J Microbiol; 2005 Mar 15; 51(3):231-9. PubMed ID: 15920621
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Phytoremediation of contaminated soils containing gasoline using Ludwigia octovalvis (Jacq.) in greenhouse pots.
    Al-Mansoory AF, Idris M, Abdullah SRS, Anuar N.
    Environ Sci Pollut Res Int; 2017 May 15; 24(13):11998-12008. PubMed ID: 26330312
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Bioremediation of a weathered and a recently oil-contaminated soils from Brazil: a comparison study.
    Trindade PV, Sobral LG, Rizzo AC, Leite SG, Soriano AU.
    Chemosphere; 2005 Jan 15; 58(4):515-22. PubMed ID: 15620743
    [Abstract] [Full Text] [Related]

  • 19. Evaluation of natural attenuation rate at a gasoline spill site.
    Kao CM, Prosser J.
    J Hazard Mater; 2001 Apr 20; 82(3):275-89. PubMed ID: 11240068
    [Abstract] [Full Text] [Related]

  • 20. Impact of the Fenton-like treatment on the microbial community of a diesel-contaminated soil.
    Polli F, Zingaretti D, Crognale S, Pesciaroli L, D'Annibale A, Petruccioli M, Baciocchi R.
    Chemosphere; 2018 Jan 20; 191():580-588. PubMed ID: 29073567
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.