These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
158 related items for PubMed ID: 12212490
1. [Microgravity and weightlessness: experimental model accelerates nutritional pathology]. Genton L, Dupertuis Y, Maillet A, Beaufrere B, Di Nardo P, Elia M, Pichard C. Rev Med Suisse Romande; 2002 Jul; 122(7):339-43. PubMed ID: 12212490 [Abstract] [Full Text] [Related]
2. A review of muscle atrophy in microgravity and during prolonged bed rest. Droppert PM. J Br Interplanet Soc; 1993 Mar; 46(3):83-6. PubMed ID: 11539498 [Abstract] [Full Text] [Related]
3. Weightlessness as an accelerated model of nutritional disturbances. Maillet A, Beaufrere B, Di Nardo P, Elia M, Pichard C. Curr Opin Clin Nutr Metab Care; 2001 Jul; 4(4):301-6. PubMed ID: 11458025 [Abstract] [Full Text] [Related]
4. Stress under normal conditions, hypokinesia simulating weightlessness, and during flights in space. Grigor'ev AI, Fedorov BM. Hum Physiol; 1996 Jul; 22(2):139-47. PubMed ID: 11541518 [Abstract] [Full Text] [Related]
5. [Muscle atrophy in microgravity and during its simulation]. Il'ina-Kakueva EI, Kaplanskiĭ AS. Aviakosm Ekolog Med; 2005 Jul; 39(5):43-9. PubMed ID: 16447954 [Abstract] [Full Text] [Related]
6. Physiological adaptations to space flight. Lane HW, Smith SM. Life Support Biosph Sci; 1999 Jul; 6(1):13-8. PubMed ID: 11541538 [Abstract] [Full Text] [Related]
8. Effect of space flight and head-down bedrest on neuroendocrine response to metabolic stress in physically trained subjects. Kvetnanský R, Ksinantová L, Koska J, Noskov VB, Vigas M, Grigoriev AI, Macho L. J Gravit Physiol; 2004 Jul; 11(2):P57-60. PubMed ID: 16231455 [Abstract] [Full Text] [Related]
9. Perspective on the consequences of short- and long-duration space flight on human physiology. Holick MF. Life Support Biosph Sci; 1999 Jul; 6(1):19-27. PubMed ID: 11541539 [Abstract] [Full Text] [Related]
12. The effects of weightlessness on the human organism and mammalian cells. Pietsch J, Bauer J, Egli M, Infanger M, Wise P, Ulbrich C, Grimm D. Curr Mol Med; 2011 Jul; 11(5):350-64. PubMed ID: 21568935 [Abstract] [Full Text] [Related]
14. Physiological and biomechanical considerations for a human Mars mission. Hawkey A. J Br Interplanet Soc; 2005 Jul; 58(3-4):117-30. PubMed ID: 15852539 [Abstract] [Full Text] [Related]
15. [Effects of simulated microgravity on cardiovascular function and counter effect of lower body negative pressure]. Sun XQ, Jiang SZ, Yao YJ, Jiang CL, Hao WY, Wu XY. Space Med Med Eng (Beijing); 2002 Aug; 15(4):235-40. PubMed ID: 12422854 [Abstract] [Full Text] [Related]
16. Daily 4-h head-up tilt is effective in preventing muscle but not bone atrophy due to simulated microgravity. Sun B, Cao XS, Zhang LF, Liu C, Ni HY, Cheng JH, Wu XY. J Gravit Physiol; 2003 Dec; 10(2):29-38. PubMed ID: 15838980 [Abstract] [Full Text] [Related]
18. Human sensorimotor coordination following space flights. Cherepakhin MA, Purakhin YN, Petukhov BN, Pervushin VI. Life Sci Space Res; 1973 Dec; 11():117-21. PubMed ID: 11998857 [Abstract] [Full Text] [Related]
19. Physiological, pharmacokinetic, and pharmacodynamic changes in space. Graebe A, Schuck EL, Lensing P, Putcha L, Derendorf H. J Clin Pharmacol; 2004 Aug; 44(8):837-53. PubMed ID: 15286087 [Abstract] [Full Text] [Related]
20. Psychophysiological and neuroendocrine interrelations in conditions of antiorthostatic hypokinesia. Vassilieva GYu, Nichiporuk IA, Ivanov AA, Pozdnyakov SV. J Gravit Physiol; 1998 Jul; 5(1):P105-6. PubMed ID: 11542309 [Abstract] [Full Text] [Related] Page: [Next] [New Search]