These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Glutamate-induced apoptosis in primary cortical neurons is inhibited by equine estrogens via down-regulation of caspase-3 and prevention of mitochondrial cytochrome c release. Zhang Y, Bhavnani BR. BMC Neurosci; 2005 Feb 24; 6():13. PubMed ID: 15730564 [Abstract] [Full Text] [Related]
3. Temporal and spatial profile of caspase 8 expression and proteolysis after experimental traumatic brain injury. Beer R, Franz G, Krajewski S, Pike BR, Hayes RL, Reed JC, Wang KK, Klimmer C, Schmutzhard E, Poewe W, Kampfl A. J Neurochem; 2001 Aug 24; 78(4):862-73. PubMed ID: 11520907 [Abstract] [Full Text] [Related]
4. Differential expression of apoptotic protease-activating factor-1 and caspase-3 genes and susceptibility to apoptosis during brain development and after traumatic brain injury. Yakovlev AG, Ota K, Wang G, Movsesyan V, Bao WL, Yoshihara K, Faden AI. J Neurosci; 2001 Oct 01; 21(19):7439-46. PubMed ID: 11567033 [Abstract] [Full Text] [Related]
5. Cytochrome c release and caspase activation in traumatic axonal injury. Büki A, Okonkwo DO, Wang KK, Povlishock JT. J Neurosci; 2000 Apr 15; 20(8):2825-34. PubMed ID: 10751434 [Abstract] [Full Text] [Related]
6. boc-Aspartyl(OMe)-fluoromethylketone attenuates mitochondrial release of cytochrome c and delays brain tissue loss after traumatic brain injury in rats. Clark RS, Nathaniel PD, Zhang X, Dixon CE, Alber SM, Watkins SC, Melick JA, Kochanek PM, Graham SH. J Cereb Blood Flow Metab; 2007 Feb 15; 27(2):316-26. PubMed ID: 16736044 [Abstract] [Full Text] [Related]
7. Caspase 7: increased expression and activation after traumatic brain injury in rats. Larner SF, McKinsey DM, Hayes RL, W Wang KK. J Neurochem; 2005 Jul 15; 94(1):97-108. PubMed ID: 15953353 [Abstract] [Full Text] [Related]
8. Caspase-dependent and -independent death of camptothecin-treated embryonic cortical neurons. Stefanis L, Park DS, Friedman WJ, Greene LA. J Neurosci; 1999 Aug 01; 19(15):6235-47. PubMed ID: 10414953 [Abstract] [Full Text] [Related]
9. Temporal profile and cell subtype distribution of activated caspase-3 following experimental traumatic brain injury. Beer R, Franz G, Srinivasan A, Hayes RL, Pike BR, Newcomb JK, Zhao X, Schmutzhard E, Poewe W, Kampfl A. J Neurochem; 2000 Sep 01; 75(3):1264-73. PubMed ID: 10936210 [Abstract] [Full Text] [Related]
10. Proteomic identification of oxidized mitochondrial proteins following experimental traumatic brain injury. Opii WO, Nukala VN, Sultana R, Pandya JD, Day KM, Merchant ML, Klein JB, Sullivan PG, Butterfield DA. J Neurotrauma; 2007 May 01; 24(5):772-89. PubMed ID: 17518533 [Abstract] [Full Text] [Related]
11. Activation of CPP32-like caspases contributes to neuronal apoptosis and neurological dysfunction after traumatic brain injury. Yakovlev AG, Knoblach SM, Fan L, Fox GB, Goodnight R, Faden AI. J Neurosci; 1997 Oct 01; 17(19):7415-24. PubMed ID: 9295387 [Abstract] [Full Text] [Related]
12. Temporal and spatial profile of Bid cleavage after experimental traumatic brain injury. Franz G, Beer R, Intemann D, Krajewski S, Reed JC, Engelhardt K, Pike BR, Hayes RL, Wang KK, Schmutzhard E, Kampfl A. J Cereb Blood Flow Metab; 2002 Aug 01; 22(8):951-8. PubMed ID: 12172380 [Abstract] [Full Text] [Related]
13. Intracellular Bax translocation after transient cerebral ischemia: implications for a role of the mitochondrial apoptotic signaling pathway in ischemic neuronal death. Cao G, Minami M, Pei W, Yan C, Chen D, O'Horo C, Graham SH, Chen J. J Cereb Blood Flow Metab; 2001 Apr 01; 21(4):321-33. PubMed ID: 11323518 [Abstract] [Full Text] [Related]
14. Combined mechanical trauma and metabolic impairment in vitro induces NMDA receptor-dependent neuronal cell death and caspase-3-dependent apoptosis. Allen JW, Knoblach SM, Faden AI. FASEB J; 1999 Oct 01; 13(13):1875-82. PubMed ID: 10506592 [Abstract] [Full Text] [Related]
15. Grape seed extract induces apoptotic death of human prostate carcinoma DU145 cells via caspases activation accompanied by dissipation of mitochondrial membrane potential and cytochrome c release. Agarwal C, Singh RP, Agarwal R. Carcinogenesis; 2002 Nov 01; 23(11):1869-76. PubMed ID: 12419835 [Abstract] [Full Text] [Related]
16. Increased expression and processing of caspase-12 after traumatic brain injury in rats. Larner SF, Hayes RL, McKinsey DM, Pike BR, Wang KK. J Neurochem; 2004 Jan 01; 88(1):78-90. PubMed ID: 14675152 [Abstract] [Full Text] [Related]
17. Caspase activation and mitochondrial cytochrome C release during hypoxia-mediated apoptosis of adult ventricular myocytes. de Moissac D, Gurevich RM, Zheng H, Singal PK, Kirshenbaum LA. J Mol Cell Cardiol; 2000 Jan 01; 32(1):53-63. PubMed ID: 10652190 [Abstract] [Full Text] [Related]
18. Caspase inhibition therapy abolishes brain trauma-induced increases in Abeta peptide: implications for clinical outcome. Abrahamson EE, Ikonomovic MD, Ciallella JR, Hope CE, Paljug WR, Isanski BA, Flood DG, Clark RS, DeKosky ST. Exp Neurol; 2006 Feb 01; 197(2):437-50. PubMed ID: 16300758 [Abstract] [Full Text] [Related]
19. Inhibition of caspase-8 attenuates neuronal death induced by limbic seizures in a cytochrome c-dependent and Smac/DIABLO-independent way. Li T, Lu C, Xia Z, Xiao B, Luo Y. Brain Res; 2006 Jul 07; 1098(1):204-11. PubMed ID: 16774749 [Abstract] [Full Text] [Related]
20. Tetrahydrocannabinol-induced apoptosis of cultured cortical neurones is associated with cytochrome c release and caspase-3 activation. Campbell VA. Neuropharmacology; 2001 Apr 07; 40(5):702-9. PubMed ID: 11311898 [Abstract] [Full Text] [Related] Page: [Next] [New Search]