These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Looking for an insulin pill? Use the BRET methodology! Issad T, Boute N, Boubekeur S, Lacasa D, Pernet K. Diabetes Metab; 2003 Apr; 29(2 Pt 1):111-7. PubMed ID: 12746630 [Abstract] [Full Text] [Related]
3. Monitoring the activation state of the insulin receptor using bioluminescence resonance energy transfer. Boute N, Pernet K, Issad T. Mol Pharmacol; 2001 Oct; 60(4):640-5. PubMed ID: 11562424 [Abstract] [Full Text] [Related]
4. Monitoring the activation state of the insulin-like growth factor-1 receptor and its interaction with protein tyrosine phosphatase 1B using bioluminescence resonance energy transfer. Blanquart C, Boute N, Lacasa D, Issad T. Mol Pharmacol; 2005 Sep; 68(3):885-94. PubMed ID: 15976035 [Abstract] [Full Text] [Related]
5. Monitoring the activation state of insulin/insulin-like growth factor-1 hybrid receptors using bioluminescence resonance energy transfer. Blanquart C, Gonzalez-Yanes C, Issad T. Mol Pharmacol; 2006 Nov; 70(5):1802-11. PubMed ID: 16926280 [Abstract] [Full Text] [Related]
6. Monitoring interactions between receptor tyrosine kinases and their downstream effector proteins in living cells using bioluminescence resonance energy transfer. Tan PK, Wang J, Littler PL, Wong KK, Sweetnam TA, Keefe W, Nash NR, Reding EC, Piu F, Brann MR, Schiffer HH. Mol Pharmacol; 2007 Dec; 72(6):1440-6. PubMed ID: 17715395 [Abstract] [Full Text] [Related]
9. The use of bioluminescence resonance energy transfer for the study of therapeutic targets: application to tyrosine kinase receptors. Issad T, Blanquart C, Gonzalez-Yanes C. Expert Opin Ther Targets; 2007 Apr; 11(4):541-56. PubMed ID: 17373883 [Abstract] [Full Text] [Related]
10. Interaction between the insulin receptor and Grb14: a dynamic study in living cells using BRET. Nouaille S, Blanquart C, Zilberfarb V, Boute N, Perdereau D, Burnol AF, Issad T. Biochem Pharmacol; 2006 Nov 30; 72(11):1355-66. PubMed ID: 16934761 [Abstract] [Full Text] [Related]
12. Development of a human breast-cancer derived cell line stably expressing a bioluminescence resonance energy transfer (BRET)-based phosphatidyl inositol-3 phosphate (PIP3) biosensor. Kuo MS, Auriau J, Pierre-Eugène C, Issad T. PLoS One; 2014 Nov 30; 9(3):e92737. PubMed ID: 24647478 [Abstract] [Full Text] [Related]
14. Interaction of PTPB with the insulin receptor precursor during its biosynthesis in the endoplasmic reticulum. Issad T, Boute N, Boubekeur S, Lacasa D. Biochimie; 2005 Jan 30; 87(1):111-6. PubMed ID: 15733745 [Abstract] [Full Text] [Related]
15. A BRET assay for monitoring insulin receptor interactions and ligand pharmacology. Kulahin N, Sanni SJ, Slaaby R, Nøhr J, Gammeltoft S, Hansen JL, Jorgensen R. J Recept Signal Transduct Res; 2012 Apr 30; 32(2):57-64. PubMed ID: 22272819 [Abstract] [Full Text] [Related]
16. Interaction of the insulin receptor with the receptor-like protein tyrosine phosphatases PTPalpha and PTPepsilon in living cells. Lacasa D, Boute N, Issad T. Mol Pharmacol; 2005 Apr 30; 67(4):1206-13. PubMed ID: 15630078 [Abstract] [Full Text] [Related]
17. Insulin-receptor autophosphorylation and endogenous substrate phosphorylation in human adipocytes from control, obese, and NIDDM subjects. Thies RS, Molina JM, Ciaraldi TP, Freidenberg GR, Olefsky JM. Diabetes; 1990 Feb 30; 39(2):250-9. PubMed ID: 2227134 [Abstract] [Full Text] [Related]
18. Reporter-Based BRET Sensors for Measuring Biological Functions In Vivo. Rathod M, Mal A, De A. Methods Mol Biol; 2018 Feb 30; 1790():51-74. PubMed ID: 29858783 [Abstract] [Full Text] [Related]
19. Direct comparison of bioluminescence-based resonance energy transfer methods for monitoring of proteolytic cleavage. Dacres H, Dumancic MM, Horne I, Trowell SC. Anal Biochem; 2009 Feb 15; 385(2):194-202. PubMed ID: 19026607 [Abstract] [Full Text] [Related]