These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
219 related items for PubMed ID: 12219079
1. Efficient gene targeting by homologous recombination in rice. Terada R, Urawa H, Inagaki Y, Tsugane K, Iida S. Nat Biotechnol; 2002 Oct; 20(10):1030-4. PubMed ID: 12219079 [Abstract] [Full Text] [Related]
2. Picking genes in the rice genome. Shimamoto K. Nat Biotechnol; 2002 Oct; 20(10):983-4. PubMed ID: 12355110 [No Abstract] [Full Text] [Related]
3. Homologous recombination-mediated knock-in targeting of the MET1a gene for a maintenance DNA methyltransferase reproducibly reveals dosage-dependent spatiotemporal gene expression in rice. Yamauchi T, Johzuka-Hisatomi Y, Fukada-Tanaka S, Terada R, Nakamura I, Iida S. Plant J; 2009 Oct; 60(2):386-96. PubMed ID: 19519802 [Abstract] [Full Text] [Related]
4. A tale of two integrations, transgene and T-DNA: gene targeting by homologous recombination in rice. Iida S, Terada R. Curr Opin Biotechnol; 2004 Apr; 15(2):132-8. PubMed ID: 15081051 [Abstract] [Full Text] [Related]
5. Development of an efficient agrobacterium-mediated gene targeting system for rice and analysis of rice knockouts lacking granule-bound starch synthase (Waxy) and β1,2-xylosyltransferase. Ozawa K, Wakasa Y, Ogo Y, Matsuo K, Kawahigashi H, Takaiwa F. Plant Cell Physiol; 2012 Apr; 53(4):755-61. PubMed ID: 22327484 [Abstract] [Full Text] [Related]
6. Site-specific gene integration in rice genome mediated by the FLP-FRT recombination system. Nandy S, Srivastava V. Plant Biotechnol J; 2011 Aug; 9(6):713-21. PubMed ID: 21083801 [Abstract] [Full Text] [Related]
7. Marker-free site-specific gene integration in rice based on the use of two recombination systems. Nandy S, Srivastava V. Plant Biotechnol J; 2012 Oct; 10(8):904-12. PubMed ID: 22686401 [Abstract] [Full Text] [Related]
8. Molecular characterization of true and ectopic gene targeting events at the acetolactate synthase gene in Arabidopsis. Endo M, Osakabe K, Ichikawa H, Toki S. Plant Cell Physiol; 2006 Mar; 47(3):372-9. PubMed ID: 16418231 [Abstract] [Full Text] [Related]
9. Development of transformation system of rice based on binary bacterial artificial chromosome (BIBAC) vector. He RF, Wang YY, Du B, Tang M, You AQ, Zhu LL, He GC. Yi Chuan Xue Bao; 2006 Mar; 33(3):269-76. PubMed ID: 16553216 [Abstract] [Full Text] [Related]
10. [Genetic mapping of T-DNA integration sites in Xa21 transgenic rice]. Zhu XF, Chen XW, Li XB, Qian Q, Huang DN, Zhu LH, Zhai WX. Yi Chuan Xue Bao; 2002 Oct; 29(10):880-6. PubMed ID: 12561472 [Abstract] [Full Text] [Related]
11. Monitoring homologous recombination in rice (Oryza sativa L.). Yang Z, Tang L, Li M, Chen L, Xu J, Wu G, Li H. Mutat Res; 2010 Sep 10; 691(1-2):55-63. PubMed ID: 20670635 [Abstract] [Full Text] [Related]
12. Development of a highly efficient gene targeting system for Fusarium graminearum using the disruption of a polyketide synthase gene as a visible marker. Maier FJ, Malz S, Lösch AP, Lacour T, Schäfer W. FEMS Yeast Res; 2005 Apr 10; 5(6-7):653-62. PubMed ID: 15780665 [Abstract] [Full Text] [Related]
13. [Cotransformation of rice by bar and cecropin B gene expression cassettes lacking vector backbone sequences]. Zhao Y, Yu YC, Qian Q, Yan MX, Huang DN. Yi Chuan Xue Bao; 2003 Feb 10; 30(2):135-41. PubMed ID: 12776601 [Abstract] [Full Text] [Related]
14. High throughput T-DNA insertion mutagenesis in rice: a first step towards in silico reverse genetics. Sallaud C, Gay C, Larmande P, Bès M, Piffanelli P, Piégu B, Droc G, Regad F, Bourgeois E, Meynard D, Périn C, Sabau X, Ghesquière A, Glaszmann JC, Delseny M, Guiderdoni E. Plant J; 2004 Aug 10; 39(3):450-64. PubMed ID: 15255873 [Abstract] [Full Text] [Related]
15. Modification of endogenous natural genes by gene targeting in rice and other higher plants. Iida S, Terada R. Plant Mol Biol; 2005 Sep 10; 59(1):205-19. PubMed ID: 16217613 [Abstract] [Full Text] [Related]
16. Transgene expression produced by biolistic-mediated, site-specific gene integration is consistently inherited by the subsequent generations. Chawla R, Ariza-Nieto M, Wilson AJ, Moore SK, Srivastava V. Plant Biotechnol J; 2006 Mar 10; 4(2):209-18. PubMed ID: 17177797 [Abstract] [Full Text] [Related]
17. ZFN-induced mutagenesis and gene-targeting in Arabidopsis through Agrobacterium-mediated floral dip transformation. de Pater S, Neuteboom LW, Pinas JE, Hooykaas PJ, van der Zaal BJ. Plant Biotechnol J; 2009 Oct 10; 7(8):821-35. PubMed ID: 19754840 [Abstract] [Full Text] [Related]
18. The complete sequence of the rice (Oryza sativa L.) mitochondrial genome: frequent DNA sequence acquisition and loss during the evolution of flowering plants. Notsu Y, Masood S, Nishikawa T, Kubo N, Akiduki G, Nakazono M, Hirai A, Kadowaki K. Mol Genet Genomics; 2002 Dec 10; 268(4):434-45. PubMed ID: 12471441 [Abstract] [Full Text] [Related]
19. Method for Bxb1-mediated site-specific integration in planta. Yau YY, Wang Y, Thomson JG, Ow DW. Methods Mol Biol; 2011 Dec 10; 701():147-66. PubMed ID: 21181529 [Abstract] [Full Text] [Related]
20. Higher-level accumulation of foreign gene products in transgenic rice seeds by the callus-specific selection system. Wakasa Y, Ozawa K, Takaiwa F. J Biosci Bioeng; 2009 Jan 10; 107(1):78-83. PubMed ID: 19147115 [Abstract] [Full Text] [Related] Page: [Next] [New Search]