These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


152 related items for PubMed ID: 12220174

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. High-resolution X-ray structure of the unexpectedly stable dimer of the [Lys(-2)-Arg(-1)-des(17-21)]endothelin-1 peptide.
    Hoh F, Cerdan R, Kaas Q, Nishi Y, Chiche L, Kubo S, Chino N, Kobayashi Y, Dumas C, Aumelas A.
    Biochemistry; 2004 Dec 07; 43(48):15154-68. PubMed ID: 15568807
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. The chimeric peptide [Lys(-2)-Arg(-1)]-sarafotoxin-S6b, composed of the endothelin pro-sequence and sarafotoxin, retains the salt-bridge staple between Arg(-1) and Asp8 previously observed in [Lys(-2)-Arg(-1)]-endothelin. Implications of this salt-bridge in the contractile activity and the oxidative folding reaction.
    Aumelas A, Chiche L, Kubo S, Chino N, Watanabe TX, Kobayashi Y.
    Eur J Biochem; 1999 Dec 07; 266(3):977-85. PubMed ID: 10583392
    [Abstract] [Full Text] [Related]

  • 5. [Lys(-2)-Arg(-1)]endothelin-1 solution structure by two-dimensional 1H-NMR: possible involvement of electrostatic interactions in native disulfide bridge formation and in biological activity decrease.
    Aumelas A, Chiche L, Kubo S, Chino N, Tamaoki H, Kobayashi Y.
    Biochemistry; 1995 Apr 11; 34(14):4546-61. PubMed ID: 7718556
    [Abstract] [Full Text] [Related]

  • 6. Influence of Glu/Arg, Asp/Arg, and Glu/Lys Salt Bridges on α-Helical Stability and Folding Kinetics.
    Meuzelaar H, Vreede J, Woutersen S.
    Biophys J; 2016 Jun 07; 110(11):2328-2341. PubMed ID: 27276251
    [Abstract] [Full Text] [Related]

  • 7. Molecular dynamics simulations of pentapeptides at interfaces: salt bridge and cation-pi interactions.
    Aliste MP, MacCallum JL, Tieleman DP.
    Biochemistry; 2003 Aug 05; 42(30):8976-87. PubMed ID: 12885230
    [Abstract] [Full Text] [Related]

  • 8. Solution structure determination of endothelin-1 in methanol/water by NMR and molecular modelling methods.
    Hewage CM, Jiang L, Parkinson JA, Ramage R, Sadler IH.
    J Pept Sci; 1997 Aug 05; 3(6):415-28. PubMed ID: 9467970
    [Abstract] [Full Text] [Related]

  • 9. Solution conformation of an ET(B) selective agonist, ET-1[Cys(Acm)1,15,Ala3,Leu7,Aib11], in CD3OH/H2O by 1H NMR and molecular modelling.
    Hewage CM, Jiang L, Parkinson JA, Ramage R, Sadler IH.
    FEBS Lett; 1998 Mar 27; 425(2):234-8. PubMed ID: 9559655
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Evaluating the strength of salt bridges: a comparison of current biomolecular force fields.
    Debiec KT, Gronenborn AM, Chong LT.
    J Phys Chem B; 2014 Jun 19; 118(24):6561-9. PubMed ID: 24702709
    [Abstract] [Full Text] [Related]

  • 12. Cooperativity network of Trp-cage miniproteins: probing salt-bridges.
    Rovó P, Farkas V, Hegyi O, Szolomájer-Csikós O, Tóth GK, Perczel A.
    J Pept Sci; 2011 Sep 19; 17(9):610-9. PubMed ID: 21644245
    [Abstract] [Full Text] [Related]

  • 13. The structure and IR signatures of the arginine-glutamate salt bridge. Insights from the classical MD simulations.
    Vener MV, Odinokov AV, Wehmeyer C, Sebastiani D.
    J Chem Phys; 2015 Jun 07; 142(21):215106. PubMed ID: 26049530
    [Abstract] [Full Text] [Related]

  • 14. Hydrophobic core around tyrosine for human endothelin-1 investigated by photochemically induced dynamic nuclear polarization nuclear magnetic resonance and matrix-assisted laser desorption ionization time-of-flight mass spectrometry.
    Takashima H, Tamaoki H, Teno N, Nishi Y, Uchiyama S, Fukui K, Kobayashi Y.
    Biochemistry; 2004 Nov 09; 43(44):13932-6. PubMed ID: 15518541
    [Abstract] [Full Text] [Related]

  • 15. A linear endothelin-1 analogue: solution structure of ET-1[Aib1,3,11,15, Nle7] by nuclear magnetic resonance spectroscopy and molecular modelling.
    Hewage CM, Jiang L, Parkinson JA, Ramage R, Sadler IH.
    Neurochem Int; 1999 Jul 09; 35(1):35-45. PubMed ID: 10403428
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. The alpha-helical propensity of the cytoplasmic domain of phospholamban: a molecular dynamics simulation of the effect of phosphorylation and mutation.
    Paterlini MG, Thomas DD.
    Biophys J; 2005 May 09; 88(5):3243-51. PubMed ID: 15764655
    [Abstract] [Full Text] [Related]

  • 18. The behavior of the active site salt bridge of bovine neurophysins as monitored by 15N NMR spectroscopy and chemical substitution. Relationship to biochemical properties.
    Zheng C, Cahill S, Breslow E.
    Biochemistry; 1996 Sep 10; 35(36):11763-72. PubMed ID: 8794757
    [Abstract] [Full Text] [Related]

  • 19. Structures of protonated dipeptides: the role of arginine in stabilizing salt bridges.
    Prell JS, O'Brien JT, Steill JD, Oomens J, Williams ER.
    J Am Chem Soc; 2009 Aug 19; 131(32):11442-9. PubMed ID: 19624125
    [Abstract] [Full Text] [Related]

  • 20. Role of electrostatic interactions in binding of peptides and intrinsically disordered proteins to their folded targets. 1. NMR and MD characterization of the complex between the c-Crk N-SH3 domain and the peptide Sos.
    Xue Y, Yuwen T, Zhu F, Skrynnikov NR.
    Biochemistry; 2014 Oct 21; 53(41):6473-95. PubMed ID: 25207671
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.