These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


128 related items for PubMed ID: 12220658

  • 1. YIL113w encodes a functional dual-specificity protein phosphatase which specifically interacts with and inactivates the Slt2/Mpk1p MAP kinase in S. cerevisiae.
    Collister M, Didmon MP, MacIsaac F, Stark MJ, MacDonald NQ, Keyse SM.
    FEBS Lett; 2002 Sep 11; 527(1-3):186-92. PubMed ID: 12220658
    [Abstract] [Full Text] [Related]

  • 2. Regulation of the Saccharomyces cerevisiae Slt2 kinase pathway by the stress-inducible Sdp1 dual specificity phosphatase.
    Hahn JS, Thiele DJ.
    J Biol Chem; 2002 Jun 14; 277(24):21278-84. PubMed ID: 11923319
    [Abstract] [Full Text] [Related]

  • 3. Type 2C protein phosphatase Ptc6 participates in activation of the Slt2-mediated cell wall integrity pathway in Saccharomyces cerevisiae.
    Sharmin D, Sasano Y, Sugiyama M, Harashima S.
    J Biosci Bioeng; 2015 Apr 14; 119(4):392-8. PubMed ID: 25449759
    [Abstract] [Full Text] [Related]

  • 4. Regulatory mechanisms for modulation of signaling through the cell integrity Slt2-mediated pathway in Saccharomyces cerevisiae.
    Martín H, Rodríguez-Pachón JM, Ruiz C, Nombela C, Molina M.
    J Biol Chem; 2000 Jan 14; 275(2):1511-9. PubMed ID: 10625705
    [Abstract] [Full Text] [Related]

  • 5. Distinct docking mechanisms mediate interactions between the Msg5 phosphatase and mating or cell integrity mitogen-activated protein kinases (MAPKs) in Saccharomyces cerevisiae.
    Palacios L, Dickinson RJ, Sacristán-Reviriego A, Didmon MP, Marín MJ, Martín H, Keyse SM, Molina M.
    J Biol Chem; 2011 Dec 09; 286(49):42037-42050. PubMed ID: 22006927
    [Abstract] [Full Text] [Related]

  • 6. Reciprocal regulation between Slt2 MAPK and isoforms of Msg5 dual-specificity protein phosphatase modulates the yeast cell integrity pathway.
    Flández M, Cosano IC, Nombela C, Martín H, Molina M.
    J Biol Chem; 2004 Mar 19; 279(12):11027-34. PubMed ID: 14703512
    [Abstract] [Full Text] [Related]

  • 7. The Mitogen-Activated Protein Kinase Slt2 Promotes Asymmetric Cell Cycle Arrest and Reduces TORC1-Sch9 Signaling in Yeast Lacking the Protein Phosphatase Ptc1.
    González-Rubio G, Martín H, Molina M.
    Microbiol Spectr; 2023 Jun 15; 11(3):e0524922. PubMed ID: 37042757
    [Abstract] [Full Text] [Related]

  • 8. Different modulation of the outputs of yeast MAPK-mediated pathways by distinct stimuli and isoforms of the dual-specificity phosphatase Msg5.
    Marín MJ, Flández M, Bermejo C, Arroyo J, Martín H, Molina M.
    Mol Genet Genomics; 2009 Mar 15; 281(3):345-59. PubMed ID: 19123063
    [Abstract] [Full Text] [Related]

  • 9. Differential Role of Threonine and Tyrosine Phosphorylation in the Activation and Activity of the Yeast MAPK Slt2.
    González-Rubio G, Sellers-Moya Á, Martín H, Molina M.
    Int J Mol Sci; 2021 Jan 23; 22(3):. PubMed ID: 33498635
    [Abstract] [Full Text] [Related]

  • 10. Rck1 up-regulates Hog1 activity by down-regulating Slt2 activity in Saccharomyces cerevisiae.
    Chang M, Kang HJ, Baek IJ, Kang CM, Park YS, Yun CW.
    Biochem Biophys Res Commun; 2013 Oct 11; 440(1):119-24. PubMed ID: 24051094
    [Abstract] [Full Text] [Related]

  • 11. Expressed in the yeast Saccharomyces cerevisiae, human ERK5 is a client of the Hsp90 chaperone that complements loss of the Slt2p (Mpk1p) cell integrity stress-activated protein kinase.
    Truman AW, Millson SH, Nuttall JM, King V, Mollapour M, Prodromou C, Pearl LH, Piper PW.
    Eukaryot Cell; 2006 Nov 11; 5(11):1914-24. PubMed ID: 16950928
    [Abstract] [Full Text] [Related]

  • 12. The interaction of Slt2 MAP kinase with Knr4 is necessary for signalling through the cell wall integrity pathway in Saccharomyces cerevisiae.
    Martin-Yken H, Dagkessamanskaia A, Basmaji F, Lagorce A, Francois J.
    Mol Microbiol; 2003 Jul 11; 49(1):23-35. PubMed ID: 12823808
    [Abstract] [Full Text] [Related]

  • 13. Dual-specificity protein tyrosine phosphatase VHR down-regulates c-Jun N-terminal kinase (JNK).
    Todd JL, Rigas JD, Rafty LA, Denu JM.
    Oncogene; 2002 Apr 11; 21(16):2573-83. PubMed ID: 11971192
    [Abstract] [Full Text] [Related]

  • 14. A two-hybrid screen of the yeast proteome for Hsp90 interactors uncovers a novel Hsp90 chaperone requirement in the activity of a stress-activated mitogen-activated protein kinase, Slt2p (Mpk1p).
    Millson SH, Truman AW, King V, Prodromou C, Pearl LH, Piper PW.
    Eukaryot Cell; 2005 May 11; 4(5):849-60. PubMed ID: 15879519
    [Abstract] [Full Text] [Related]

  • 15. Negative-feedback regulation of CD28 costimulation by a novel mitogen-activated protein kinase phosphatase, MKP6.
    Marti F, Krause A, Post NH, Lyddane C, Dupont B, Sadelain M, King PD.
    J Immunol; 2001 Jan 01; 166(1):197-206. PubMed ID: 11123293
    [Abstract] [Full Text] [Related]

  • 16. Identification of a novel Ser/Thr protein phosphatase Ppq1 as a negative regulator of mating MAP kinase pathway in Saccharomyces cerevisiae.
    Shim E, Park SH.
    Biochem Biophys Res Commun; 2014 Jan 03; 443(1):252-8. PubMed ID: 24309106
    [Abstract] [Full Text] [Related]

  • 17. Differential regulation of FUS3 MAP kinase by tyrosine-specific phosphatases PTP2/PTP3 and dual-specificity phosphatase MSG5 in Saccharomyces cerevisiae.
    Zhan XL, Deschenes RJ, Guan KL.
    Genes Dev; 1997 Jul 01; 11(13):1690-702. PubMed ID: 9224718
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Investigating the caffeine effects in the yeast Saccharomyces cerevisiae brings new insights into the connection between TOR, PKC and Ras/cAMP signalling pathways.
    Kuranda K, Leberre V, Sokol S, Palamarczyk G, François J.
    Mol Microbiol; 2006 Sep 01; 61(5):1147-66. PubMed ID: 16925551
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.