These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
183 related items for PubMed ID: 12223471
1. Linker histone subtype composition and affinity for chromatin in situ in nucleated mature erythrocytes. Koutzamani E, Loborg H, Sarg B, Lindner HH, Rundquist I. J Biol Chem; 2002 Nov 22; 277(47):44688-94. PubMed ID: 12223471 [Abstract] [Full Text] [Related]
2. Analyses of linker histone--chromatin interactions in situ. Rundquist I, Lindner HH. Biochem Cell Biol; 2006 Aug 22; 84(4):427-36. PubMed ID: 16936816 [Abstract] [Full Text] [Related]
3. Affinity of linker histones for chromatin in situ analyzed using DAPI as a cytochemical probe. Loborg H, Rundquist I. Cytometry; 2000 May 01; 40(1):1-9. PubMed ID: 10754511 [Abstract] [Full Text] [Related]
4. Identification of novel post-translational modifications in linker histones from chicken erythrocytes. Sarg B, Lopez R, Lindner H, Ponte I, Suau P, Roque A. J Proteomics; 2015 Jan 15; 113():162-77. PubMed ID: 25452131 [Abstract] [Full Text] [Related]
5. [Features of the chromatin structure of erythrocytes depending on the properties of lysine-rich histones]. Kostyleva EI, Selivanova GV, Zalenskaia IA. Mol Biol (Mosk); 1989 Jan 15; 23(1):73-9. PubMed ID: 2544799 [Abstract] [Full Text] [Related]
6. Histone H5-chromatin interactions in situ are strongly modulated by H5 C-terminal phosphorylation. Kostova NN, Srebreva L, Markov DV, Sarg B, Lindner HH, Rundquist I. Cytometry A; 2013 Mar 15; 83(3):273-9. PubMed ID: 23081878 [Abstract] [Full Text] [Related]
7. Subnuclear distribution of the entire complement of linker histone variants in Arabidopsis thaliana. Ascenzi R, Gantt JS. Chromosoma; 1999 Nov 15; 108(6):345-55. PubMed ID: 10591994 [Abstract] [Full Text] [Related]
8. Histone H1 and chromatin interactions in human fibroblast nuclei after H1 depletion and reconstitution with H1 subfractions. Kostova NN, Srebreva L, Markov DV, Rundquist I. Cytometry A; 2004 Apr 15; 58(2):132-9. PubMed ID: 15057966 [Abstract] [Full Text] [Related]
9. Characterization of post-translational modifications of the linker histones H1 and H5 from chicken erythrocytes using mass spectrometry. Snijders AP, Pongdam S, Lambert SJ, Wood CM, Baldwin JP, Dickman MJ. J Proteome Res; 2008 Oct 15; 7(10):4326-35. PubMed ID: 18754630 [Abstract] [Full Text] [Related]
10. Remodeling somatic nuclei in Xenopus laevis egg extracts: molecular mechanisms for the selective release of histones H1 and H1(0) from chromatin and the acquisition of transcriptional competence. Dimitrov S, Wolffe AP. EMBO J; 1996 Nov 01; 15(21):5897-906. PubMed ID: 8918467 [Abstract] [Full Text] [Related]
11. Binding of linker histones to the core nucleosome. Ali Z, Singh N. J Biol Chem; 1987 Sep 25; 262(27):12989-93. PubMed ID: 3654599 [Abstract] [Full Text] [Related]
12. Histone accessibility determined by lysine-specific acetylation in chicken erythrocyte nuclei. Lewis PN, Guillemette JG, Chan S. Eur J Biochem; 1988 Feb 15; 172(1):135-45. PubMed ID: 3126068 [Abstract] [Full Text] [Related]
13. Assembly into chromatin and subtype-specific transcriptional effects of exogenous linker histones directly introduced into a living Physarum cell. Thiriet C, Hayes JJ. J Cell Sci; 2001 Mar 15; 114(Pt 5):965-73. PubMed ID: 11181179 [Abstract] [Full Text] [Related]
14. Linker DNA destabilizes condensed chromatin. Green GR, Ferlita RR, Walkenhorst WF, Poccia DL. Biochem Cell Biol; 2001 Mar 15; 79(3):349-63. PubMed ID: 11467748 [Abstract] [Full Text] [Related]
15. H5 Histone and DNA-relaxing enzyme of chicken erythrocytes. Interaction with superhelical DNA. Bina-Stein M, Vogel T, Singer DS, Singer MF. J Biol Chem; 1976 Dec 10; 251(23):7363-6. PubMed ID: 1002694 [Abstract] [Full Text] [Related]
16. Differential association of linker histones H1 and H5 with telomeric nucleosomes in chicken erythrocytes. Muyldermans S, De Jonge J, Wyns L, Travers AA. Nucleic Acids Res; 1994 Dec 25; 22(25):5635-9. PubMed ID: 7838716 [Abstract] [Full Text] [Related]
17. Effect of exogenous histone H5 on integration of histone H1 in rat liver chromatin. Correlations with aberrant epsilon-N-methylation of histone H1. Byvoet P, Barber M, Amidei K, Lowell N, Trudeau W. Biochim Biophys Acta; 1986 Jun 20; 867(3):163-75. PubMed ID: 3087426 [Abstract] [Full Text] [Related]
18. Exchange of histones H1 and H5 between chromatin fragments. A preference of H5 for higher-order structures. Thomas JO, Rees C. Eur J Biochem; 1983 Jul 15; 134(1):109-15. PubMed ID: 6861754 [Abstract] [Full Text] [Related]
19. Regulation of the higher-order structure of chromatin by histones H1 and H5. Allan J, Cowling GJ, Harborne N, Cattini P, Craigie R, Gould H. J Cell Biol; 1981 Aug 15; 90(2):279-88. PubMed ID: 7287811 [Abstract] [Full Text] [Related]
20. Histone H5 promotes the association of condensed chromatin fragments to give pseudo-higher-order structures. Thomas JO, Rees C, Pearson EC. Eur J Biochem; 1985 Feb 15; 147(1):143-51. PubMed ID: 3971973 [Abstract] [Full Text] [Related] Page: [Next] [New Search]