These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


290 related items for PubMed ID: 12224558

  • 1. Survival of the rhizosphere-competent biocontrol strain Pseudomonas fluorescens NBRI2650 in the soil and phytosphere.
    Nautlyal CS, Johri JK, Singh HB.
    Can J Microbiol; 2002 Jul; 48(7):588-601. PubMed ID: 12224558
    [Abstract] [Full Text] [Related]

  • 2. Biologic control ability of plant growth-promoting Paenibacillus lentimorbus NRRL B-30488 isolated from milk.
    DasGupta SM, Khan N, Nautiyal CS.
    Curr Microbiol; 2006 Dec; 53(6):502-5. PubMed ID: 17089220
    [Abstract] [Full Text] [Related]

  • 3. Role of salicylic acid in systemic resistance induced by Pseudomonas fluorescens against Fusarium oxysporum f. sp. ciceri in chickpea.
    Saikia R, Singh T, Kumar R, Srivastava J, Srivastava AK, Singh K, Arora DK.
    Microbiol Res; 2003 Dec; 158(3):203-13. PubMed ID: 14521230
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Effect of biocontrol agent Pseudomonas fluorescens 2P24 on soil fungal community in cucumber rhizosphere using T-RFLP and DGGE.
    Gao G, Yin D, Chen S, Xia F, Yang J, Li Q, Wang W.
    PLoS One; 2012 Dec; 7(2):e31806. PubMed ID: 22359632
    [Abstract] [Full Text] [Related]

  • 7. Chickpea (Cicer arietinum L.) as model legume for decoding the co-existence of Pseudomonas fluorescens and Mesorhizobium sp. as bio-fertilizer under diverse agro-climatic zones.
    Nagpal S, Sharma P, Sirari A, Kumawat KC, Wati L, Gupta SC, Mandahal KS.
    Microbiol Res; 2021 Jun; 247():126720. PubMed ID: 33592359
    [Abstract] [Full Text] [Related]

  • 8. Composts containing fluorescent pseudomonads suppress fusarium root and stem rot development on greenhouse cucumber.
    Bradley GG, Punja ZK.
    Can J Microbiol; 2010 Nov; 56(11):896-905. PubMed ID: 21076480
    [Abstract] [Full Text] [Related]

  • 9. Colonization and persistence of a plant growth-promoting bacterium Pseudomonas fluorescens strain CS85, on roots of cotton seedlings.
    Wang C, Wang D, Zhou Q.
    Can J Microbiol; 2004 Jul; 50(7):475-81. PubMed ID: 15381971
    [Abstract] [Full Text] [Related]

  • 10. Effects of the tomato pathogen Fusarium oxysporum f. sp. radicis-lycopersici and of the biocontrol bacterium Pseudomonas fluorescens WCS365 on the composition of organic acids and sugars in tomato root exudate.
    Kamilova F, Kravchenko LV, Shaposhnikov AI, Makarova N, Lugtenberg B.
    Mol Plant Microbe Interact; 2006 Oct; 19(10):1121-6. PubMed ID: 17022176
    [Abstract] [Full Text] [Related]

  • 11. Effect of genotype and root colonization in biological control of fusarium wilts in pigeonpea and chickpea by Pseudomonas aeruginosa PNA1.
    Anjaiah V, Cornelis P, Koedam N.
    Can J Microbiol; 2003 Feb; 49(2):85-91. PubMed ID: 12718396
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Effect of plant growth-promoting Rhizobacteria and culture filtrate of Sclerotium rolfsii on phenolic and salicylic acid contents in chickpea (Cicer arietinum).
    Singh UP, Sarma BK, Singh DP.
    Curr Microbiol; 2003 Feb; 46(2):131-40. PubMed ID: 12520369
    [Abstract] [Full Text] [Related]

  • 15. Isolation, characterization, and formulation of antagonistic bacteria for the management of seedlings damping-off and root rot disease of cucumber.
    Khabbaz SE, Abbasi PA.
    Can J Microbiol; 2014 Jan; 60(1):25-33. PubMed ID: 24392923
    [Abstract] [Full Text] [Related]

  • 16. Biological control of chickpea Fusarium wilt by antagonistic bacteria under greenhouse condition.
    Jamali F, Sharifi-Tehrani A, Okhovvat M, Zakeri Z, Saberi-Riseh R.
    Commun Agric Appl Biol Sci; 2004 Jan; 69(4):649-51. PubMed ID: 15756852
    [Abstract] [Full Text] [Related]

  • 17. Evaluation of biocontrol efficacy of rhizosphere dwelling bacteria for management of Fusarium wilt and Botrytis gray mold of chickpea.
    Bhargavi G, Arya M, Jambhulkar PP, Singh A, Rout AK, Behera BK, Chaturvedi SK, Singh AK.
    BMC Genom Data; 2024 Jan 15; 25(1):7. PubMed ID: 38225553
    [Abstract] [Full Text] [Related]

  • 18. [Suppression of three soil-borne diseases of cucumber by a rhizosphere fungal strain].
    Lyu H, Niu YC, Deng H, Lin XM, Jin CL.
    Ying Yong Sheng Tai Xue Bao; 2015 Dec 15; 26(12):3759-65. PubMed ID: 27112016
    [Abstract] [Full Text] [Related]

  • 19. Soil suppressiveness to fusarium disease: shifts in root microbiome associated with reduction of pathogen root colonization.
    Klein E, Ofek M, Katan J, Minz D, Gamliel A.
    Phytopathology; 2013 Jan 15; 103(1):23-33. PubMed ID: 22950737
    [Abstract] [Full Text] [Related]

  • 20. Impact of biocontrol strain Pseudomonas fluorescens CHA0 on rhizosphere bacteria isolated from barley (Hordeum vulgare L.) with special reference to Cytophaga-like bacteria.
    Johansen JE, Binnerup SJ, Lejbølle KB, Mascher F, Sørensen J, Keel C.
    J Appl Microbiol; 2002 Jan 15; 93(6):1065-74. PubMed ID: 12452964
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 15.