These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
257 related items for PubMed ID: 12234788
1. Probing the link between citrate and malonyl-CoA in perfused rat hearts. Poirier M, Vincent G, Reszko AE, Bouchard B, Kelleher JK, Brunengraber H, Des Rosiers C. Am J Physiol Heart Circ Physiol; 2002 Oct; 283(4):H1379-86. PubMed ID: 12234788 [Abstract] [Full Text] [Related]
2. Citrate release by perfused rat hearts: a window on mitochondrial cataplerosis. Vincent G, Comte B, Poirier M, Rosiers CD. Am J Physiol Endocrinol Metab; 2000 May; 278(5):E846-56. PubMed ID: 10780941 [Abstract] [Full Text] [Related]
3. Peroxisomal and mitochondrial oxidation of fatty acids in the heart, assessed from the 13C labeling of malonyl-CoA and the acetyl moiety of citrate. Bian F, Kasumov T, Thomas KR, Jobbins KA, David F, Minkler PE, Hoppel CL, Brunengraber H. J Biol Chem; 2005 Mar 11; 280(10):9265-71. PubMed ID: 15611129 [Abstract] [Full Text] [Related]
4. Malonyl-CoA regulation in skeletal muscle: its link to cell citrate and the glucose-fatty acid cycle. Saha AK, Vavvas D, Kurowski TG, Apazidis A, Witters LA, Shafrir E, Ruderman NB. Am J Physiol; 1997 Apr 11; 272(4 Pt 1):E641-8. PubMed ID: 9142886 [Abstract] [Full Text] [Related]
5. Peroxisomal fatty acid oxidation is a substantial source of the acetyl moiety of malonyl-CoA in rat heart. Reszko AE, Kasumov T, David F, Jobbins KA, Thomas KR, Hoppel CL, Brunengraber H, Des Rosiers C. J Biol Chem; 2004 May 07; 279(19):19574-9. PubMed ID: 14982940 [Abstract] [Full Text] [Related]
7. A 13C mass isotopomer study of anaplerotic pyruvate carboxylation in perfused rat hearts. Comte B, Vincent G, Bouchard B, Jetté M, Cordeau S, Rosiers CD. J Biol Chem; 1997 Oct 17; 272(42):26125-31. PubMed ID: 9334177 [Abstract] [Full Text] [Related]
8. Acetyl-CoA carboxylase regulation of fatty acid oxidation in the heart. Saddik M, Gamble J, Witters LA, Lopaschuk GD. J Biol Chem; 1993 Dec 05; 268(34):25836-45. PubMed ID: 7902355 [Abstract] [Full Text] [Related]
9. Cytosolic citrate and malonyl-CoA regulation in rat muscle in vivo. Saha AK, Laybutt DR, Dean D, Vavvas D, Sebokova E, Ellis B, Klimes I, Kraegen EW, Shafrir E, Ruderman NB. Am J Physiol; 1999 Jun 05; 276(6):E1030-7. PubMed ID: 10362615 [Abstract] [Full Text] [Related]
10. Probing peroxisomal beta-oxidation and the labelling of acetyl-CoA proxies with [1-(13C)]octanoate and [3-(13C)]octanoate in the perfused rat liver. Kasumov T, Adams JE, Bian F, David F, Thomas KR, Jobbins KA, Minkler PE, Hoppel CL, Brunengraber H. Biochem J; 2005 Jul 15; 389(Pt 2):397-401. PubMed ID: 15773815 [Abstract] [Full Text] [Related]
11. Probing the origin of acetyl-CoA and oxaloacetate entering the citric acid cycle from the 13C labeling of citrate released by perfused rat hearts. Comte B, Vincent G, Bouchard B, Des Rosiers C. J Biol Chem; 1997 Oct 17; 272(42):26117-24. PubMed ID: 9334176 [Abstract] [Full Text] [Related]
12. Acetyl-CoA carboxylase involvement in the rapid maturation of fatty acid oxidation in the newborn rabbit heart. Lopaschuk GD, Witters LA, Itoi T, Barr R, Barr A. J Biol Chem; 1994 Oct 14; 269(41):25871-8. PubMed ID: 7929291 [Abstract] [Full Text] [Related]
13. Profiling substrate fluxes in the isolated working mouse heart using 13C-labeled substrates: focusing on the origin and fate of pyruvate and citrate carbons. Khairallah M, Labarthe F, Bouchard B, Danialou G, Petrof BJ, Des Rosiers C. Am J Physiol Heart Circ Physiol; 2004 Apr 14; 286(4):H1461-70. PubMed ID: 14670819 [Abstract] [Full Text] [Related]
14. Fatty acid chain elongation in palmitate-perfused working rat heart: mitochondrial acetyl-CoA is the source of two-carbon units for chain elongation. Kerner J, Minkler PE, Lesnefsky EJ, Hoppel CL. J Biol Chem; 2014 Apr 04; 289(14):10223-34. PubMed ID: 24558043 [Abstract] [Full Text] [Related]
15. Metabolic phenotyping of the diseased rat heart using 13C-substrates and ex vivo perfusion in the working mode. Vincent G, Khairallah M, Bouchard B, Des Rosiers C. Mol Cell Biochem; 2003 Jan 04; 242(1-2):89-99. PubMed ID: 12619870 [Abstract] [Full Text] [Related]
16. Fatty acid oxidation and the regulation of malonyl-CoA in human muscle. Båvenholm PN, Pigon J, Saha AK, Ruderman NB, Efendic S. Diabetes; 2000 Jul 04; 49(7):1078-83. PubMed ID: 10909961 [Abstract] [Full Text] [Related]
17. Malonyl CoA control of fatty acid oxidation in the newborn heart in response to increased fatty acid supply. Onay-Besikci A, Sambandam N. Can J Physiol Pharmacol; 2006 Nov 04; 84(11):1215-22. PubMed ID: 17218986 [Abstract] [Full Text] [Related]
18. A role for ATP-citrate lyase, malic enzyme, and pyruvate/citrate cycling in glucose-induced insulin secretion. Guay C, Madiraju SR, Aumais A, Joly E, Prentki M. J Biol Chem; 2007 Dec 07; 282(49):35657-65. PubMed ID: 17928289 [Abstract] [Full Text] [Related]
19. The contribution of citrate to the synthesis of acetyl units in synaptosomes of developing rat brain. Szutowicz A, Kabata J, Bielarczyk H. J Neurochem; 1982 May 07; 38(5):1196-204. PubMed ID: 7062046 [Abstract] [Full Text] [Related]
20. Malonyl-CoA metabolism in cardiac myocytes and its relevance to the control of fatty acid oxidation. Awan MM, Saggerson ED. Biochem J; 1993 Oct 01; 295 ( Pt 1)(Pt 1):61-6. PubMed ID: 8216240 [Abstract] [Full Text] [Related] Page: [Next] [New Search]