These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
108 related items for PubMed ID: 12236451
21. A nonlinear approach to modeling of electrically stimulated skeletal muscle. Gollee H, Murray-Smith DJ, Jarvis JC. IEEE Trans Biomed Eng; 2001 Apr; 48(4):406-15. PubMed ID: 11322528 [Abstract] [Full Text] [Related]
23. Fatigability and variable-frequency train stimulation of human skeletal muscles. Bickel CS, Slade JM, Warren GL, Dudley GA. Phys Ther; 2003 Apr; 83(4):366-73. PubMed ID: 12665407 [Abstract] [Full Text] [Related]
24. Reducing muscle fatigue due to functional electrical stimulation using random modulation of stimulation parameters. Thrasher A, Graham GM, Popovic MR. Artif Organs; 2005 Jun; 29(6):453-8. PubMed ID: 15926981 [Abstract] [Full Text] [Related]
25. Myofascial force transmission is increasingly important at lower forces: firing frequency-related length-force characteristics of rat extensor digitorum longus. Meijer HJ, Baan GC, Huijing PA. Acta Physiol (Oxf); 2006 Mar; 186(3):185-95. PubMed ID: 16497198 [Abstract] [Full Text] [Related]
27. The effect of summation of contraction on acceleration signals in human skeletal muscle. Ohta Y, Shima N, Yabe K. J Electromyogr Kinesiol; 2010 Oct; 20(5):1007-13. PubMed ID: 20430645 [Abstract] [Full Text] [Related]
28. Pattern of pulses that maximize force output from single human thenar motor units. Thomas CK, Johansson RS, Bigland-Ritchie B. J Neurophysiol; 1999 Dec; 82(6):3188-95. PubMed ID: 10601452 [Abstract] [Full Text] [Related]
31. Development and reversal of fatigue in human tibialis anterior. Reid MB, Grubwieser GJ, Stokic DS, Koch SM, Leis AA. Muscle Nerve; 1993 Nov; 16(11):1239-45. PubMed ID: 8413377 [Abstract] [Full Text] [Related]
32. The pattern of stimulation influences the amount of oscillatory work done by frog muscle. Stevens ED. J Physiol; 1996 Jul 01; 494 ( Pt 1)(Pt 1):279-85. PubMed ID: 8814621 [Abstract] [Full Text] [Related]
33. Effect of potentiation on the catchlike property of human skeletal muscles. Ding J, Storaska JA, Binder-Macleod SA. Muscle Nerve; 2003 Mar 01; 27(3):312-9. PubMed ID: 12635118 [Abstract] [Full Text] [Related]
34. Effect of frequency and pulse duration on human muscle fatigue during repetitive electrical stimulation. Kesar T, Binder-Macleod S. Exp Physiol; 2006 Nov 01; 91(6):967-76. PubMed ID: 16873456 [Abstract] [Full Text] [Related]
35. Interleaved, multisite electrical stimulation of cat sciatic nerve produces fatigue-resistant, ripple-free motor responses. McDonnall D, Clark GA, Normann RA. IEEE Trans Neural Syst Rehabil Eng; 2004 Jun 01; 12(2):208-15. PubMed ID: 15218935 [Abstract] [Full Text] [Related]
36. Open-loop tracking performance of a limb joint controlled by random, periodic, and abrupt electrical stimulation inputs to the antagonist muscle pair. Zhou BH, Baratta RV, Solomonow M, Matsushita N, D'Ambrosia RD. IEEE Trans Biomed Eng; 1998 Apr 01; 45(4):511-9. PubMed ID: 9556968 [Abstract] [Full Text] [Related]
37. The development of a potential optimized stimulation intensity envelope for drop foot applications. O'Keeffe DT, Donnelly AE, Lyons GM. IEEE Trans Neural Syst Rehabil Eng; 2003 Sep 01; 11(3):249-56. PubMed ID: 14518788 [Abstract] [Full Text] [Related]
38. Finite element modeling of aponeurotomy: altered intramuscular myofascial force transmission yields complex sarcomere length distributions determining acute effects. Yucesoy CA, Koopman BH, Grootenboer HJ, Huijing PA. Biomech Model Mechanobiol; 2007 Jul 01; 6(4):227-43. PubMed ID: 16897102 [Abstract] [Full Text] [Related]
40. The influence of antagonist muscle control strategies on the isometric frequency response of the cat's ankle joint. Goodwin A, Zhou BH, Baratta RV, Solomonow M, Keegan AP. IEEE Trans Biomed Eng; 1997 Jul 01; 44(7):634-9. PubMed ID: 9210823 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]