These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


131 related items for PubMed ID: 12241059

  • 1. Flux control of the bacterial phosphoenolpyruvate:glucose phosphotransferase system and the effect of diffusion.
    Francke C, Westerhoff HV, Blom JG, Peletier MA.
    Mol Biol Rep; 2002; 29(1-2):21-6. PubMed ID: 12241059
    [Abstract] [Full Text] [Related]

  • 2. Enzyme I facilitates reverse flux from pyruvate to phosphoenolpyruvate in Escherichia coli.
    Long CP, Au J, Sandoval NR, Gebreselassie NA, Antoniewicz MR.
    Nat Commun; 2017 Jan 27; 8():14316. PubMed ID: 28128209
    [Abstract] [Full Text] [Related]

  • 3. Consequences of phosphoenolpyruvate:sugar phosphotranferase system and pyruvate kinase isozymes inactivation in central carbon metabolism flux distribution in Escherichia coli.
    Meza E, Becker J, Bolivar F, Gosset G, Wittmann C.
    Microb Cell Fact; 2012 Sep 13; 11():127. PubMed ID: 22973998
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Phosphoenolpyruvate:glucose phosphotransferase system modification increases the conversion rate during L-tryptophan production in Escherichia coli.
    Liu L, Chen S, Wu J.
    J Ind Microbiol Biotechnol; 2017 Oct 13; 44(10):1385-1395. PubMed ID: 28726163
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Single-cell characterization of metabolic switching in the sugar phosphotransferase system of Escherichia coli.
    Westermayer SA, Fritz G, Gutiérrez J, Megerle JA, Weißl MP, Schnetz K, Gerland U, Rädler JO.
    Mol Microbiol; 2016 May 13; 100(3):472-85. PubMed ID: 26784570
    [Abstract] [Full Text] [Related]

  • 9. Nutrient-scavenging stress response in an Escherichia coli strain lacking the phosphoenolpyruvate: carbohydrate phosphotransferase system, as explored by gene expression profile analysis.
    Flores S, Flores N, de Anda R, González A, Escalante A, Sigala JC, Gosset G, Bolívar F.
    J Mol Microbiol Biotechnol; 2005 May 13; 10(1):51-63. PubMed ID: 16491026
    [Abstract] [Full Text] [Related]

  • 10. Why the phosphotransferase system of Escherichia coli escapes diffusion limitation.
    Francke C, Postma PW, Westerhoff HV, Blom JG, Peletier MA.
    Biophys J; 2003 Jul 13; 85(1):612-22. PubMed ID: 12829515
    [Abstract] [Full Text] [Related]

  • 11. Growth recovery on glucose under aerobic conditions of an Escherichia coli strain carrying a phosphoenolpyruvate:carbohydrate phosphotransferase system deletion by inactivating arcA and overexpressing the genes coding for glucokinase and galactose permease.
    Flores N, Leal L, Sigala JC, de Anda R, Escalante A, Martínez A, Ramírez OT, Gosset G, Bolivar F.
    J Mol Microbiol Biotechnol; 2007 Jul 13; 13(1-3):105-16. PubMed ID: 17693718
    [Abstract] [Full Text] [Related]

  • 12. Rerouting carbon flux for optimized biosynthesis of mesaconate in Escherichia coli.
    Wang J, Wang J, Tai YS, Zhang Q, Bai W, Zhang K.
    Appl Microbiol Biotechnol; 2018 Sep 13; 102(17):7377-7388. PubMed ID: 29926142
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Influence of growth environment on the phosphoenolpyruvate: glucose phosphotransferase activities of Escherichia coli and Klebsiella aerogenes: a comparative study.
    Neijssel OM, Hardy GP, Lansbergen JC, Tempest DW, O'Brien RW.
    Arch Microbiol; 1980 Mar 13; 125(1-2):175-9. PubMed ID: 6992732
    [Abstract] [Full Text] [Related]

  • 17. Current knowledge of the Escherichia coli phosphoenolpyruvate-carbohydrate phosphotransferase system: peculiarities of regulation and impact on growth and product formation.
    Escalante A, Salinas Cervantes A, Gosset G, Bolívar F.
    Appl Microbiol Biotechnol; 2012 Jun 13; 94(6):1483-94. PubMed ID: 22573269
    [Abstract] [Full Text] [Related]

  • 18. Adaptation for fast growth on glucose by differential expression of central carbon metabolism and gal regulon genes in an Escherichia coli strain lacking the phosphoenolpyruvate:carbohydrate phosphotransferase system.
    Flores N, Flores S, Escalante A, de Anda R, Leal L, Malpica R, Georgellis D, Gosset G, Bolívar F.
    Metab Eng; 2005 Mar 13; 7(2):70-87. PubMed ID: 15781417
    [Abstract] [Full Text] [Related]

  • 19. The phosphoenolpyruvate-dependent glucose-phosphotransferase system from Escherichia coli K-12 as the center of a network regulating carbohydrate flux in the cell.
    Gabor E, Göhler AK, Kosfeld A, Staab A, Kremling A, Jahreis K.
    Eur J Cell Biol; 2011 Sep 13; 90(9):711-20. PubMed ID: 21621292
    [Abstract] [Full Text] [Related]

  • 20. Pathway engineering for the production of aromatic compounds in Escherichia coli.
    Flores N, Xiao J, Berry A, Bolivar F, Valle F.
    Nat Biotechnol; 1996 May 13; 14(5):620-3. PubMed ID: 9630954
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.