These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


166 related items for PubMed ID: 1227506

  • 1. The activation of non-phosphorylating electron transport by adenine nucleotides in Jerusalem-artichoke (Helianthus tuberosus) mitochondria.
    Sotthibandhu R, Palmer JM.
    Biochem J; 1975 Dec; 152(3):637-45. PubMed ID: 1227506
    [Abstract] [Full Text] [Related]

  • 2. Metabolism of rat brain mitochondria. Studies on the potassium ion-stimulated oxidation of pyruvate.
    Nicklas WJ, Clark JB, Williamson JR.
    Biochem J; 1971 Jun; 123(1):83-95. PubMed ID: 5128666
    [Abstract] [Full Text] [Related]

  • 3. Control of pyruvate dehydrogenase activity in intact cardiac mitochondria. Regulation of the inactivation and activation of the dehydrogenase.
    Chiang PK, Sacktor B.
    J Biol Chem; 1975 May 10; 250(9):3399-408. PubMed ID: 123530
    [Abstract] [Full Text] [Related]

  • 4. Regulation of pyruvate oxidation in blowfly flight muscle mitochondria: requirement for ADP.
    Bulos BA, Thomas BJ, Shukla SP, Sacktor B.
    Arch Biochem Biophys; 1984 Nov 01; 234(2):382-93. PubMed ID: 6497378
    [Abstract] [Full Text] [Related]

  • 5. Activation of NADH oxidation by atractylate in Jerusalem artichoke (Helianthus tuberosus) mitochondria.
    Sotthibandhu R, Palmer JM.
    FEBS Lett; 1978 May 01; 89(1):165-8. PubMed ID: 207566
    [No Abstract] [Full Text] [Related]

  • 6. Stimulation of electron transport and activation of reduced nicotinamide--adenine dinucleotide dehydrogenase in Jerusalem-artichoke mitochondria.
    Palmer JM, Sotthibandhu R.
    Biochem Soc Trans; 1975 May 01; 3(1):171-3. PubMed ID: 1126529
    [No Abstract] [Full Text] [Related]

  • 7. The control of tricarboxylate-cycle oxidations in blowfly flight muscle. The oxidized and reduced nicotinamide-adenine dinucleotide content of flight muscle and isolated mitochondria, the adenosine triphosphate and adenosine diphosphate content of mitochondria, and the energy status of the mitochondria during controlled respiration.
    Hansford RG.
    Biochem J; 1975 Mar 01; 146(3):537-47. PubMed ID: 167720
    [Abstract] [Full Text] [Related]

  • 8. Regulation of pyruvate dehydrogenase by fatty acid in isolated rat liver mitochondria.
    Batenburg JJ, Olson MS.
    J Biol Chem; 1976 Mar 10; 251(5):1364-70. PubMed ID: 176149
    [Abstract] [Full Text] [Related]

  • 9. The oxidative activities of membrane vesicles from Bacillus caldolyticus. Energy-dependence of succinate oxidation.
    Dawson AG, Chappell JB.
    Biochem J; 1978 Feb 15; 170(2):395-405. PubMed ID: 205211
    [Abstract] [Full Text] [Related]

  • 10. Influence of calcium on NADH and succinate oxidation by rat heart submitochondrial particles.
    Panov AV, Scaduto RC.
    Arch Biochem Biophys; 1995 Feb 01; 316(2):815-20. PubMed ID: 7864638
    [Abstract] [Full Text] [Related]

  • 11. Evidence for the electrogenic nature of the ATP-ADP exchange system in rat liver mitochondria.
    Laris PC.
    Biochim Biophys Acta; 1977 Jan 06; 459(1):110-8. PubMed ID: 831780
    [Abstract] [Full Text] [Related]

  • 12. Reactions involved in energy transfer in trypanosomes-I. Characterization of the mitochondrial adenine nucleotide translocator and the ATPase of Crithidia luciliae.
    Opperdoes FR, Rijke DD, Borst P.
    Comp Biochem Physiol B; 1976 Jan 06; 54(1):7-12. PubMed ID: 131670
    [No Abstract] [Full Text] [Related]

  • 13. Regulation of pyruvate dehydrogenase in isolated rat liver mitochondria. Effects of octanoate, oxidation-reduction state, and adenosine triphosphate to adenosine diphosphate ratio.
    Taylor SI, Mukherjee C, Jungas RL.
    J Biol Chem; 1975 Mar 25; 250(6):2028-35. PubMed ID: 1116996
    [Abstract] [Full Text] [Related]

  • 14. Binding of radioactively labeled carboxyatractyloside, atractyloside and bongkrekic acid to the ADP translocator of potato mitochondria.
    Vignais PV, Douce R, Lauquin GJ, Vignais PM.
    Biochim Biophys Acta; 1976 Sep 13; 440(3):688-96. PubMed ID: 963047
    [Abstract] [Full Text] [Related]

  • 15. Succinate-driven reverse electron transport in the respiratory chain of plant mitochondria. The effects of rotenone and adenylates in relation to malate and oxaloacetate metabolism.
    Rustin P, Lance C.
    Biochem J; 1991 Feb 15; 274 ( Pt 1)(Pt 1):249-55. PubMed ID: 2001241
    [Abstract] [Full Text] [Related]

  • 16. Correlation between the malate dependent progesterone and citrate biosynthesis in the mitochondrial fraction of human term placenta. The stimulatory effect of ADP and ATP.
    Swierczynski J, Klimek J, Zelewski L.
    J Steroid Biochem; 1986 Feb 15; 24(2):591-5. PubMed ID: 3702442
    [Abstract] [Full Text] [Related]

  • 17. Sites of inhibition of mitochondrial electron transport by rhein.
    Floridi A, Castiglione S, Bianchi C.
    Biochem Pharmacol; 1989 Mar 01; 38(5):743-51. PubMed ID: 2522779
    [Abstract] [Full Text] [Related]

  • 18. Mitochondria-localized NAD biosynthesis by nicotinamide mononucleotide adenylyltransferase in Jerusalem artichoke (Helianthus tuberosus L.) heterotrophic tissues.
    Di Martino C, Pallotta ML.
    Planta; 2011 Oct 01; 234(4):657-70. PubMed ID: 21598001
    [Abstract] [Full Text] [Related]

  • 19. THE EFFECT OF ATRACTYLATE AND OLIGOMYCIN ON THE BEHAVIOUR OF MITOCHONDRIA TOWARDS ADENINE NUCLEOTIDES.
    CHAPPELL JB, CROFTS AR.
    Biochem J; 1965 Jun 01; 95(3):707-16. PubMed ID: 14342506
    [Abstract] [Full Text] [Related]

  • 20. Oxidation processes and ubiquinone localization in the branched respiratory system of mi-1 mutant of Neurospora crassa.
    Drabikowska AK.
    Acta Biochim Pol; 1975 Jun 01; 22(2):169-78. PubMed ID: 168706
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.