These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
161 related items for PubMed ID: 122942
1. Energy transduction and proton translocation by adenosine triphosphatases. Boyer PD. FEBS Lett; 1975 Feb 01; 50(2):91-4. PubMed ID: 122942 [No Abstract] [Full Text] [Related]
2. Proton translocation mechanisms and energy transduction by adenosine triphosphatases: an answer to criticisms. Mitchell P. FEBS Lett; 1975 Feb 01; 50(2):95-7. PubMed ID: 234404 [No Abstract] [Full Text] [Related]
3. A molecular mechanism of energy transduction at a cytochrome level. Marbach G, Vignais PM. J Theor Biol; 1975 Oct 01; 54(2):335-43. PubMed ID: 128662 [No Abstract] [Full Text] [Related]
4. Flip-flop model of energy interconversion by ATP synthetase. Repke KR, Schön R. Acta Biol Med Ger; 1974 Oct 01; 33(1):K27-38. PubMed ID: 4278420 [No Abstract] [Full Text] [Related]
5. Some contemporary problems in electron-transport-linked adenosine triphosphate synthesis and related processes. Ferguson SJ. Biochem Soc Trans; 1977 Oct 01; 5(2):582-8. PubMed ID: 143382 [No Abstract] [Full Text] [Related]
7. Mechanism of oxidative phosphorylation. Slater EC. Annu Rev Biochem; 1977 Oct 01; 46():1015-26. PubMed ID: 20036 [No Abstract] [Full Text] [Related]
8. The sodium pump. Glynn IM, Karlish SJ. Annu Rev Physiol; 1975 Oct 01; 37():13-55. PubMed ID: 123724 [No Abstract] [Full Text] [Related]
9. Thermodynamic evaluation of flip-flop mechanism for transport- and ATP-synthesis function of (Na,K)-ATPase. Schön R, Dittrich F, Repke KR. Acta Biol Med Ger; 1974 Oct 01; 33(1):K9-16. PubMed ID: 4278821 [No Abstract] [Full Text] [Related]
10. Adenine nucleotide translocation in cauliflower mitochondria. Janovitz A, Chávez E, Klapp M. Arch Biochem Biophys; 1976 Mar 01; 173(1):264-8. PubMed ID: 130834 [No Abstract] [Full Text] [Related]
11. Muscle contraction, conformational changes and energy transduction. Gergely J. Ann N Y Acad Sci; 1974 Feb 18; 227():587-93. PubMed ID: 4275126 [No Abstract] [Full Text] [Related]
12. Transient kinetics of sarcoplasmic reticulum CA2+ + Mg2+ ATPase studied by fluorescence. Dupont Y, Leigh JB. Nature; 1978 Jun 01; 273(5661):396-8. PubMed ID: 149252 [No Abstract] [Full Text] [Related]
13. Mechanisms of energy transformations. Racker E. Annu Rev Biochem; 1977 Jun 01; 46():1006-14. PubMed ID: 20035 [No Abstract] [Full Text] [Related]
15. Binding of adenosine diphosphate to reaction intermediates in the Na+, K+-dependent ATPase from porcine kidney. Yamaguchi M, Tonomura Y. J Biochem; 1978 Apr 01; 83(4):977-87. PubMed ID: 149118 [No Abstract] [Full Text] [Related]
16. Energy transfer in muscle contraction. Morales MF. Ann N Y Acad Sci; 1974 Feb 18; 227():183-7. PubMed ID: 4275118 [No Abstract] [Full Text] [Related]
17. Actin as an energy transducer. Laki K. J Theor Biol; 1974 Mar 18; 44(1):117-30. PubMed ID: 4274624 [No Abstract] [Full Text] [Related]
18. The mechanism and regulation of ATP synthesis by F1-ATPases. Cross RL. Annu Rev Biochem; 1981 Mar 18; 50():681-714. PubMed ID: 6455964 [No Abstract] [Full Text] [Related]
19. Proceedings: Properties of a phosphorylated intermediate of the Ca2+-dependent ATPase and ADP-ATP phosphate exchange of cardiac sarcoplasmic reticulum. Suko J, Hasselbach W. Naunyn Schmiedebergs Arch Pharmacol; 1974 Mar 18; 282(Suppl):suppl 282:R97. PubMed ID: 4276657 [No Abstract] [Full Text] [Related]
20. Chemical and chemiosmotic aspects of electron transport-linked phosphorylation. Ernster L. Annu Rev Biochem; 1977 Mar 18; 46():981-95. PubMed ID: 20042 [No Abstract] [Full Text] [Related] Page: [Next] [New Search]