These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Chemical reaction mechanism for ATP synthesis and hydrolysis by ATP synthetase. Repke KR, Dittrich F, Schön R. Acta Biol Med Ger; 1974; 33(1):K39-47. PubMed ID: 4278734 [No Abstract] [Full Text] [Related]
24. Adenosine triphosphatase and active cation transport in red blood cell membranes. Dunham PB, Gunn RB. Arch Intern Med; 1972 Feb; 129(2):241-7. PubMed ID: 4258088 [No Abstract] [Full Text] [Related]
25. Nonequilibrium isotope exchange reveals a catalytically significant enzyme-phosphate complex in the ATP hydrolysis pathway of the AAA(+) ATPase magnesium chelatase. Adams NB, Reid JD. Biochemistry; 2012 Mar 13; 51(10):2029-31. PubMed ID: 22372406 [Abstract] [Full Text] [Related]
26. [Coupling mechanism of ATP hydrolysis to active transport in sarcoplasmic reticulum]. Kanazawa T. Seikagaku; 1972 Aug 13; 44(8):323-39. PubMed ID: 4265248 [No Abstract] [Full Text] [Related]
27. Rapid quench kinetic analysis of polymerases, adenosinetriphosphatases, and enzyme intermediates. Johnson KA. Methods Enzymol; 1995 Aug 13; 249():38-61. PubMed ID: 7791620 [No Abstract] [Full Text] [Related]
29. The interactions of coupling ATPases with nucleotides. Harris DA. Biochim Biophys Acta; 1978 Mar 10; 463(3-4):245-73. PubMed ID: 147104 [No Abstract] [Full Text] [Related]
30. The utilization of binding energy in coupled vectorial processes. Jencks WP. Adv Enzymol Relat Areas Mol Biol; 1980 Mar 10; 51():75-106. PubMed ID: 6255774 [No Abstract] [Full Text] [Related]
31. Transmembrane electrochemical H+-potential as a convertible energy source for the living cell. Skulachev VP. FEBS Lett; 1977 Feb 15; 74(1):1-9. PubMed ID: 14031 [No Abstract] [Full Text] [Related]
32. Synthesis of ATP from ADP and inorganic phosphate at the myosin-subfragment 1 active site. Mannherz HG, Schenck H, Goody RS. Eur J Biochem; 1974 Oct 01; 48(1):287-95. PubMed ID: 4375032 [No Abstract] [Full Text] [Related]
34. Tightly bound adenine nucleotide in bacterial membrane ATPase. Abrams A, Nolan EA, Jensen C, Smith JB. Biochem Biophys Res Commun; 1973 Nov 01; 55(1):22-9. PubMed ID: 4274573 [No Abstract] [Full Text] [Related]
35. Exploration of adenosine 5'-diphosphate-adenosine 5'-triphosphate binding sites of Escherichia coli adenosine 5'-triphosphatase with arylazido adenine nucleotides. Lunardi J, Satre M, Vignais PV. Biochemistry; 1981 Feb 03; 20(3):473-80. PubMed ID: 6452156 [No Abstract] [Full Text] [Related]
36. Phosphate transport and the stoicheiometry of respiratory driven proton translocation in Escherichia coli. Cox JC, Haddock BA. Biochem Biophys Res Commun; 1978 May 15; 82(1):46-52. PubMed ID: 27190 [No Abstract] [Full Text] [Related]
37. [Mechanism of the effect of anions on adenosine triphosphatase activity]. Ivashchenko AT. Nauchnye Doki Vyss Shkoly Biol Nauki; 1981 May 15; (7):5-15. PubMed ID: 6115682 [No Abstract] [Full Text] [Related]
38. The membrane ATPase of Escherichia coli. I. Ion dependence and ATP-ADP exchange reaction. Roisin MP, Kepes A. Biochim Biophys Acta; 1972 Sep 20; 275(3):333-46. PubMed ID: 4262689 [No Abstract] [Full Text] [Related]
39. The nucleotide complexes of myosin in glycerol-extracted muscle fibres. Marston S. Biochim Biophys Acta; 1973 May 30; 305(2):397-412. PubMed ID: 4270181 [No Abstract] [Full Text] [Related]