These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


124 related items for PubMed ID: 12298074

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Synthetic models of the active site of cytochrome C oxidase: influence of tridentate or tetradentate copper chelates bearing a His--Tyr linkage mimic on dioxygen adduct formation by heme/Cu complexes.
    Liu JG, Naruta Y, Tani F.
    Chemistry; 2007; 13(22):6365-78. PubMed ID: 17503416
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Formation and spectroscopic characterization of the dioxygen adduct of a heme-Cu complex possessing a cross-linked tyrosine-histidine mimic: modeling the active site of cytochrome c oxidase.
    Liu JG, Naruta Y, Tani F, Chishiro T, Tachi Y.
    Chem Commun (Camb); 2004 Jan 07; (1):120-1. PubMed ID: 14737361
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. FTIR detection of protonation/deprotonation of key carboxyl side chains caused by redox change of the Cu(A)-heme a moiety and ligand dissociation from the heme a3-Cu(B) center of bovine heart cytochrome c oxidase.
    Okuno D, Iwase T, Shinzawa-Itoh K, Yoshikawa S, Kitagawa T.
    J Am Chem Soc; 2003 Jun 18; 125(24):7209-18. PubMed ID: 12797794
    [Abstract] [Full Text] [Related]

  • 11. Altering conserved lipid binding sites in cytochrome c oxidase of Rhodobacter sphaeroides perturbs the interaction between subunits I and III and promotes suicide inactivation of the enzyme.
    Varanasi L, Mills D, Murphree A, Gray J, Purser C, Baker R, Hosler J.
    Biochemistry; 2006 Dec 19; 45(50):14896-907. PubMed ID: 17154527
    [Abstract] [Full Text] [Related]

  • 12. Water-hydroxide exchange reactions at the catalytic site of heme-copper oxidases.
    Brändén M, Namslauer A, Hansson O, Aasa R, Brzezinski P.
    Biochemistry; 2003 Nov 18; 42(45):13178-84. PubMed ID: 14609328
    [Abstract] [Full Text] [Related]

  • 13. Internal electron-transfer reactions in cytochrome c oxidase.
    Brzezinski P.
    Biochemistry; 1996 May 07; 35(18):5611-5. PubMed ID: 8639518
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Effect of electron availability on selectivity of O2 reduction by synthetic monometallic Fe porphyrins.
    Collman JP, Shiryaeva IM, Boulatov R.
    Inorg Chem; 2003 Aug 11; 42(16):4807-9. PubMed ID: 12895101
    [Abstract] [Full Text] [Related]

  • 18. Distinguishing between Cl- and O2(2-) as the bridging element between Fe3+ and Cu2+ in resting-oxidized cytochrome c oxidase.
    Suga M, Yano N, Muramoto K, Shinzawa-Itoh K, Maeda T, Yamashita E, Tsukihara T, Yoshikawa S.
    Acta Crystallogr D Biol Crystallogr; 2011 Aug 11; 67(Pt 8):742-4. PubMed ID: 21795816
    [Abstract] [Full Text] [Related]

  • 19. Geometric and electronic structure of the heme-peroxo-copper complex [(F8TPP)FeIII-(O22-)-CuII(TMPA)](ClO4).
    Del Río D, Sarangi R, Chufán EE, Karlin KD, Hedman B, Hodgson KO, Solomon EI.
    J Am Chem Soc; 2005 Aug 31; 127(34):11969-78. PubMed ID: 16117536
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.