These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


110 related items for PubMed ID: 1230512

  • 1. [Study of the role of mitochondrial creatine phosphokinase isoenzyme in the process of energy transport in cardiac cells].
    Saks VA, Liulina VN, Chernousova GB, Voronkov IuI, Smirnov VN.
    Kardiologiia; 1975 Sep; 15(9):103-11. PubMed ID: 1230512
    [Abstract] [Full Text] [Related]

  • 2. Studies of energy transport in heart cells. Mitochondrial isoenzyme of creatine phosphokinase: kinetic properties and regulatory action of Mg2+ ions.
    Saks VA, Chernousova GB, Gukovsky DE, Smirnov VN, Chazov EI.
    Eur J Biochem; 1975 Sep 01; 57(1):273-90. PubMed ID: 126157
    [Abstract] [Full Text] [Related]

  • 3. [Mechanism of regulation of themitochondrial creatine phosphokinase reaction by magnewium ions].
    Saks VA, Gukovskiĭ DE, Lipina NV, Smirnov VN, Chazov EI.
    Kardiologiia; 1976 Sep 01; 16(9):72-9. PubMed ID: 1011532
    [Abstract] [Full Text] [Related]

  • 4. [Functional characterization of the creatine phosphokinase reactions in heart mitochondria and myofibrils].
    Saks VA, Lipina NV, Liulina IV, Chernousova GB, Fetter R, Smirnov VI, Chazov EI.
    Biokhimiia; 1976 Aug 01; 41(8):1460-70. PubMed ID: 1030648
    [Abstract] [Full Text] [Related]

  • 5. Structural changes of mitochondrial creatine kinase upon binding of ADP, ATP, or Pi, observed by reaction-induced infrared difference spectra.
    Granjon T, Vacheron MJ, Vial C, Buchet R.
    Biochemistry; 2001 Mar 06; 40(9):2988-94. PubMed ID: 11258911
    [Abstract] [Full Text] [Related]

  • 6. [A comparative study of the role of creatine phosphokinase isoenzymes in energy metabolism of skeletal and heart muscle].
    Saks VA, Seppet EK, Liulina NV.
    Biokhimiia; 1977 Apr 06; 42(4):579-88. PubMed ID: 870086
    [Abstract] [Full Text] [Related]

  • 7. Respiratory control and the integration of heart high-energy phosphate metabolism by mitochondrial creatine kinase.
    Jacobus WE.
    Annu Rev Physiol; 1985 Apr 06; 47():707-25. PubMed ID: 3888084
    [Abstract] [Full Text] [Related]

  • 8. [Comparative studies on the influence of creatine phosphate and creatinine phosphate on respiration and oxidative phosphorylation of isolated heart and liver mitochondria].
    Noack E.
    Arzneimittelforschung; 1973 Aug 06; 23(8):1037-41. PubMed ID: 4801023
    [No Abstract] [Full Text] [Related]

  • 9. Compartmentalized energy transfer in cardiomyocytes: use of mathematical modeling for analysis of in vivo regulation of respiration.
    Aliev MK, Saks VA.
    Biophys J; 1997 Jul 06; 73(1):428-45. PubMed ID: 9199806
    [Abstract] [Full Text] [Related]

  • 10. [Distribution of creatine phosphokinase isoenzymes (EC 2.7.3.2) in cardiac cells].
    Saks VA, Chernousova GB, Voronkov IuI, Smirnov VN, Chazov EI.
    Kardiologiia; 1976 Jun 06; 16(6):73-80. PubMed ID: 1022899
    [Abstract] [Full Text] [Related]

  • 11. Study of energy transport mechanism in myocardial cells.
    Saks VA, Chernousova GB, Voronkov II, Smirnov VN, Chazov EI.
    Circ Res; 1974 Sep 06; 35 Suppl 3():138-49. PubMed ID: 4415965
    [No Abstract] [Full Text] [Related]

  • 12. Phosphocreatine pathway for energy transport: ADP diffusion and cardiomyopathy.
    Saks VA, Belikova YO, Kuznetsov AV, Khuchua ZA, Branishte TH, Semenovsky ML, Naumov VG.
    Am J Physiol; 1991 Oct 06; 261(4 Suppl):30-8. PubMed ID: 1928451
    [Abstract] [Full Text] [Related]

  • 13. Intracellular energy transport and control of cardiac contraction.
    Saks VA, Kupriyanov VV.
    Adv Myocardiol; 1982 Oct 06; 3():475-97. PubMed ID: 6221378
    [Abstract] [Full Text] [Related]

  • 14. [Specific limitations for intracellular diffusion of ADP in cardiomyocytes].
    Belikova IuO, Kuznetsov AV, Saks VA.
    Biokhimiia; 1990 Nov 06; 55(11):1944-57. PubMed ID: 2085614
    [Abstract] [Full Text] [Related]

  • 15. Combination of 31P-NMR magnetization transfer and radioisotope exchange methods for assessment of an enzyme reaction mechanism: rate-determining steps of the creatine kinase reaction.
    Kupriyanov VV, Balaban RS, Lyulina NV, Steinschneider AYa, Saks VA.
    Biochim Biophys Acta; 1990 Dec 06; 1020(3):290-304. PubMed ID: 2248962
    [Abstract] [Full Text] [Related]

  • 16. The localization of the MM isozyme of creatine phosphokinase on the surface membrane of myocardial cells and its functional coupling to ouabain-inhibited (Na+, K+)-ATPase.
    Saks VA, Lipina NV, Sharov VG, Smirnov VN, Chazov E, Grosse R.
    Biochim Biophys Acta; 1977 Mar 17; 465(3):550-8. PubMed ID: 138445
    [Abstract] [Full Text] [Related]

  • 17. [Creatine kinase reaction in cardiac mitoplasts of rats. Its relation to oxidative phosphorylation].
    Kuznetsov AV, Saks VA, Kupriianov VV.
    Biull Vsesoiuznogo Kardiol Nauchn Tsentra AMN SSSR; 1985 Mar 17; 8(1):7-14. PubMed ID: 4005057
    [No Abstract] [Full Text] [Related]

  • 18. Is there the creatine kinase equilibrium in working heart cells?
    Saks VA, Aliev MK.
    Biochem Biophys Res Commun; 1996 Oct 14; 227(2):360-7. PubMed ID: 8878521
    [Abstract] [Full Text] [Related]

  • 19. KINETIC STUDIES OF THE REVERSE REACTION CATALYSED BY ADENOSINE TRIPHOSPHATE-CREATINE PHOSPHOTRANSFERASE. THE INHIBITION BY MAGNESIUM IONS AND ADENOSINE DIPHOSPHATE.
    MORRISON JF, O'SULLIVAN WJ.
    Biochem J; 1965 Jan 14; 94(1):221-35. PubMed ID: 14342234
    [Abstract] [Full Text] [Related]

  • 20. [Ability of a phosphocreatine-myofibrillar creatine kinase system to prevent the rigor tension of myocardial fibers].
    Veksler VI, Kapel'ko VI.
    Biofizika; 1985 Jan 14; 30(2):301-5. PubMed ID: 3986231
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.