These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


144 related items for PubMed ID: 12322985

  • 1. A theoretical analysis of the thermodynamic contributions for the adsorption of individual protein residues on functionalized surfaces.
    Latour RA, Hench LL.
    Biomaterials; 2002 Dec; 23(23):4633-48. PubMed ID: 12322985
    [Abstract] [Full Text] [Related]

  • 2. Theoretical analysis of adsorption thermodynamics for charged peptide residues on SAM surfaces of varying functionality.
    Basalyga DM, Latour RA.
    J Biomed Mater Res A; 2003 Jan 01; 64(1):120-30. PubMed ID: 12483704
    [Abstract] [Full Text] [Related]

  • 3. Theoretical analysis of adsorption thermodynamics for hydrophobic peptide residues on SAM surfaces of varying functionality.
    Latour RA, Rini CJ.
    J Biomed Mater Res; 2002 Jun 15; 60(4):564-77. PubMed ID: 11948515
    [Abstract] [Full Text] [Related]

  • 4. Molecular dynamics simulations of peptide-surface interactions.
    Raut VP, Agashe MA, Stuart SJ, Latour RA.
    Langmuir; 2005 Feb 15; 21(4):1629-39. PubMed ID: 15697318
    [Abstract] [Full Text] [Related]

  • 5. Determination of apparent thermodynamic parameters for adsorption of a midchain peptidyl residue onto a glass surface.
    Latour RA, Trembley SD, Tian Y, Lickfield GC, Wheeler AP.
    J Biomed Mater Res; 2000 Jan 15; 49(1):58-65. PubMed ID: 10559747
    [Abstract] [Full Text] [Related]

  • 6. A molecular modeling study of the effect of surface chemistry on the adsorption of a fibronectin fragment spanning the 7-10th type III repeats.
    Wilson K, Stuart SJ, Garcia A, Latour RA.
    J Biomed Mater Res A; 2004 Jun 15; 69(4):686-98. PubMed ID: 15162411
    [Abstract] [Full Text] [Related]

  • 7. Spatial decomposition of solvation free energy based on the 3D integral equation theory of molecular liquid: application to miniproteins.
    Yamazaki T, Kovalenko A.
    J Phys Chem B; 2011 Jan 20; 115(2):310-8. PubMed ID: 21166382
    [Abstract] [Full Text] [Related]

  • 8. A molecular thermodynamic approach to predict the secondary structure of homopolypeptides in aqueous systems.
    Chen CC, Zhu Y, King JA, Evans LB.
    Biopolymers; 1992 Oct 20; 32(10):1375-92. PubMed ID: 1420965
    [Abstract] [Full Text] [Related]

  • 9. Thermodynamic perspectives on the molecular mechanisms providing protein adsorption resistance that include protein-surface interactions.
    Latour RA.
    J Biomed Mater Res A; 2006 Sep 15; 78(4):843-54. PubMed ID: 16832826
    [Abstract] [Full Text] [Related]

  • 10. Modeling and simulation of protein-surface interactions: achievements and challenges.
    Ozboyaci M, Kokh DB, Corni S, Wade RC.
    Q Rev Biophys; 2016 Sep 15; 49():e4. PubMed ID: 26821792
    [Abstract] [Full Text] [Related]

  • 11. Thermodynamic investigations using molecular dynamics simulations with potential of mean force calculations for cardiotoxin protein adsorption on mixed self-assembled monolayers.
    Hung SW, Hsiao PY, Lu MC, Chieng CC.
    J Phys Chem B; 2012 Oct 25; 116(42):12661-8. PubMed ID: 23013108
    [Abstract] [Full Text] [Related]

  • 12. Interaction Entropy for Computational Alanine Scanning.
    Yan Y, Yang M, Ji CG, Zhang JZH.
    J Chem Inf Model; 2017 May 22; 57(5):1112-1122. PubMed ID: 28406301
    [Abstract] [Full Text] [Related]

  • 13. An entropic perspective of protein stability on surfaces.
    Knotts TA, Rathore N, de Pablo JJ.
    Biophys J; 2008 Jun 22; 94(11):4473-83. PubMed ID: 18326646
    [Abstract] [Full Text] [Related]

  • 14. Thermodynamics of Adsorption on Graphenic Surfaces from Aqueous Solution.
    Azhagiya Singam ER, Zhang Y, Magnin G, Miranda-Carvajal I, Coates L, Thakkar R, Poblete H, Comer J.
    J Chem Theory Comput; 2019 Feb 12; 15(2):1302-1316. PubMed ID: 30592594
    [Abstract] [Full Text] [Related]

  • 15. Prediction of the orientations of adsorbed protein using an empirical energy function with implicit solvation.
    Sun Y, Welsh WJ, Latour RA.
    Langmuir; 2005 Jun 07; 21(12):5616-26. PubMed ID: 15924498
    [Abstract] [Full Text] [Related]

  • 16. Strong Electrostatic Interactions Lead to Entropically Favorable Binding of Peptides to Charged Surfaces.
    Sprenger KG, Pfaendtner J.
    Langmuir; 2016 Jun 07; 32(22):5690-701. PubMed ID: 27181161
    [Abstract] [Full Text] [Related]

  • 17. Use of a potential of mean force to analyze free energy contributions in protein folding.
    Avbelj F.
    Biochemistry; 1992 Jul 14; 31(27):6290-7. PubMed ID: 1627567
    [Abstract] [Full Text] [Related]

  • 18. Thermodynamics of engineered gold binding peptides: establishing the structure-activity relationships.
    Seker UO, Wilson B, Kulp JL, Evans JS, Tamerler C, Sarikaya M.
    Biomacromolecules; 2014 Jul 14; 15(7):2369-77. PubMed ID: 24892212
    [Abstract] [Full Text] [Related]

  • 19. Comparison between computational alanine scanning and per-residue binding free energy decomposition for protein-protein association using MM-GBSA: application to the TCR-p-MHC complex.
    Zoete V, Michielin O.
    Proteins; 2007 Jun 01; 67(4):1026-47. PubMed ID: 17377991
    [Abstract] [Full Text] [Related]

  • 20. Molecular simulation to characterize the adsorption behavior of a fibrinogen gamma-chain fragment.
    Agashe M, Raut V, Stuart SJ, Latour RA.
    Langmuir; 2005 Feb 01; 21(3):1103-17. PubMed ID: 15667197
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.