These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


57 related items for PubMed ID: 1234673

  • 1. [Inductive synthesis of acetylcholinesterase in the brain during learning and training of rats].
    Aleksidze NG, Balavadze MV.
    Vopr Biokhim Mozga; 1975; 10():97-106. PubMed ID: 1234673
    [Abstract] [Full Text] [Related]

  • 2. Developmental lead neurotoxicity: alterations in brain cholinergic system.
    Reddy GR, Devi BC, Chetty CS.
    Neurotoxicology; 2007 Mar; 28(2):402-7. PubMed ID: 16678265
    [Abstract] [Full Text] [Related]

  • 3. Antioxidant and acetylcholinesterase response to repeated malathion exposure in rat cerebral cortex and hippocampus.
    Trevisan R, Uliano-Silva M, Pandolfo P, Franco JL, Brocardo PS, Santos AR, Farina M, Rodrigues AL, Takahashi RN, Dafre AL.
    Basic Clin Pharmacol Toxicol; 2008 Apr; 102(4):365-9. PubMed ID: 18341513
    [Abstract] [Full Text] [Related]

  • 4. Depression of acetylcholinesterase synthesis following transient cerebral ischemia in rat: pharmacohistochemical and biochemical investigation.
    Malatová Z, Gottlieb M, Marsala J.
    Gen Physiol Biophys; 1999 Mar; 18(1):57-71. PubMed ID: 10378121
    [Abstract] [Full Text] [Related]

  • 5. Role of molecular isoforms of acetylcholinesterase in learning and memory functions.
    Das A, Dikshit M, Nath C.
    Pharmacol Biochem Behav; 2005 May; 81(1):89-99. PubMed ID: 15882896
    [Abstract] [Full Text] [Related]

  • 6. [Participation of the adenylate cyclase system in inductive synthesis of acetylcholinesterase in the brain].
    Aleksidze NG, Balavadze MV.
    Biull Eksp Biol Med; 1977 May; 83(5):545-8. PubMed ID: 195647
    [Abstract] [Full Text] [Related]

  • 7. [Histochemical and biochemical study of the hippocampus and neocortex of the wistar rat. II. The activity of carboxylic acid esterases and transmitter enzymes after a learning experiment].
    Uhlig M, Luppa H, Ott T, Matthies H.
    Acta Histochem; 1980 May; 67(1):107-26. PubMed ID: 6778055
    [Abstract] [Full Text] [Related]

  • 8. Effects of adult-onset choline deprivation on the activities of acetylcholinesterase, (Na+,K+)- and Mg2+-ATPase in crucial rat brain regions.
    Liapi C, Kyriakaki A, Zarros A, Al-Humadi H, Stolakis V, Gkrouzman E, Anifantaki F, Skandali N, Margaritis M, Tsakiris S.
    Food Chem Toxicol; 2009 Jan; 47(1):82-5. PubMed ID: 18992298
    [Abstract] [Full Text] [Related]

  • 9. Changes in acetylcholinesterase, Na+,K+-ATPase, and Mg2+-ATPase activities in the frontal cortex and the hippocampus of hyper- and hypothyroid adult rats.
    Carageorgiou H, Pantos C, Zarros A, Stolakis V, Mourouzis I, Cokkinos D, Tsakiris S.
    Metabolism; 2007 Aug; 56(8):1104-10. PubMed ID: 17618957
    [Abstract] [Full Text] [Related]

  • 10. Distribution of acetylcholinesterase in the hippocampal region of the rabbit: II. Subiculum and hippocampus.
    Geneser FA.
    J Comp Neurol; 1987 Aug 01; 262(1):90-104. PubMed ID: 3624549
    [Abstract] [Full Text] [Related]

  • 11. Increased acetylcholinesterase and capase-3 expression in the brain and peripheral immune system of focal cerebral ischemic rats.
    Hu T, Fu Q, Liu X, Zhang H, Dong M.
    J Neuroimmunol; 2009 Jun 25; 211(1-2):84-91. PubMed ID: 19411116
    [Abstract] [Full Text] [Related]

  • 12. Acetylcholinesterase-rich neurons of the human cerebral cortex: cytoarchitectonic and ontogenetic patterns of distribution.
    Mesulam MM, Geula C.
    J Comp Neurol; 1991 Apr 08; 306(2):193-220. PubMed ID: 2050843
    [Abstract] [Full Text] [Related]

  • 13. Optic nerve transection affects development and use-dependent plasticity in neocortex of the rat: Quantitative acetylcholinesterase imaging.
    Melzer P, Mineo L, Ebner FF.
    Brain Res; 2007 Mar 30; 1139():68-84. PubMed ID: 17280650
    [Abstract] [Full Text] [Related]

  • 14. Genetically-determined responses of central cholinergic markers: the effects of ethanol on inbred strains of mice.
    Hashemzadeh-Gargari H, Mandel P.
    Neurotoxicology; 1989 Mar 30; 10(3):555-68. PubMed ID: 2626217
    [Abstract] [Full Text] [Related]

  • 15. Acetylcholinesterase activities in hippocampus, frontal cortex and striatum of Wistar rats after pilocarpine-induced status epilepticus.
    Freitas RM, Sousa FC, Viana GS, Fonteles MM.
    Neurosci Lett; 2006 May 15; 399(1-2):76-8. PubMed ID: 16481111
    [Abstract] [Full Text] [Related]

  • 16. [Regulation of acetylcholinesterase level in microsomes of neurons by acetylcholine and cyclic nucleotides].
    Elaev NR, Sudakova NM, Onegina LK.
    Biull Eksp Biol Med; 1982 Jan 15; 93(1):40-1. PubMed ID: 6279208
    [Abstract] [Full Text] [Related]

  • 17. The influence of thyroid gland and thyroxine on the acetylcholinesterase activity of rat brain and adenohypophysis.
    Owasoyo JO, Egbunike GN, Iramain CA.
    Endokrinologie; 1981 Apr 15; 77(2):242-6. PubMed ID: 7262047
    [Abstract] [Full Text] [Related]

  • 18. Postnatal development of cortical acetylcholinesterase-rich neurons in the rat brain: permanent and transient patterns.
    Geula C, Mesulam MM, Kuo CC, Tokuno H.
    Exp Neurol; 1995 Aug 15; 134(2):157-78. PubMed ID: 7556536
    [Abstract] [Full Text] [Related]

  • 19. Comparison of changes in AChE activity in the brain of the laboratory rat after soman and tabun intoxication.
    Hájek P, Slízová D, Krs O, Bajgar J.
    Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub; 2004 Dec 15; 148(2):209-11. PubMed ID: 15744378
    [Abstract] [Full Text] [Related]

  • 20. Ethidium bromide inhibits rat brain acetylcholinesterase activity in vitro.
    Mazzanti CM, Spanevello RM, Obregon A, Pereira LB, Streher CA, Ahmed M, Mazzanti A, Graça DL, Morsch VM, Schetinger MR.
    Chem Biol Interact; 2006 Aug 25; 162(2):121-7. PubMed ID: 16839531
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 3.