These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Functional and molecular biological evidence of SGLT-1 in the ruminal epithelium of sheep. Aschenbach JR, Wehning H, Kurze M, Schaberg E, Nieper H, Burckhardt G, Gäbel G. Am J Physiol Gastrointest Liver Physiol; 2000 Jul; 279(1):G20-7. PubMed ID: 10898743 [Abstract] [Full Text] [Related]
3. Apical sodium-glucose co-transport can be regulated by blood-borne glucose in the ruminal epithelium of sheep (Ovis aries, Merino breed). Atasoglu C, Gäbel G, Aschenbach JR. Br J Nutr; 2004 Nov; 92(5):777-83. PubMed ID: 15533266 [Abstract] [Full Text] [Related]
6. Basolateral Mg2+/Na+ exchange regulates apical nonselective cation channel in sheep rumen epithelium via cytosolic Mg2+. Leonhard-Marek S, Stumpff F, Brinkmann I, Breves G, Martens H. Am J Physiol Gastrointest Liver Physiol; 2005 Apr; 288(4):G630-45. PubMed ID: 15550561 [Abstract] [Full Text] [Related]
7. Enhanced glucose absorption in the rat small intestine following repeated doses of 5-fluorouracil. Tomimatsu T, Horie T. Chem Biol Interact; 2005 Aug 15; 155(3):129-39. PubMed ID: 15996645 [Abstract] [Full Text] [Related]
8. Cultured monolayers of the dog jejunum with the structural and functional properties resembling the normal epithelium. Weng XH, Beyenbach KW, Quaroni A. Am J Physiol Gastrointest Liver Physiol; 2005 Apr 15; 288(4):G705-17. PubMed ID: 15550553 [Abstract] [Full Text] [Related]
9. Glucose is absorbed in a sodium-dependent manner from forestomach contents of sheep. Aschenbach JR, Bhatia SK, Pfannkuche H, Gäbel G. J Nutr; 2000 Nov 15; 130(11):2797-801. PubMed ID: 11053523 [Abstract] [Full Text] [Related]
13. Functional asymmetry of the human Na+/glucose transporter (hSGLT1) in bacterial membrane vesicles. Quick M, Tomasevic J, Wright EM. Biochemistry; 2003 Aug 05; 42(30):9147-52. PubMed ID: 12885248 [Abstract] [Full Text] [Related]
14. Diurnal rhythmicity in intestinal SGLT-1 function, V(max), and mRNA expression topography. Tavakkolizadeh A, Berger UV, Shen KR, Levitsky LL, Zinner MJ, Hediger MA, Ashley SW, Whang EE, Rhoads DB. Am J Physiol Gastrointest Liver Physiol; 2001 Feb 05; 280(2):G209-15. PubMed ID: 11208542 [Abstract] [Full Text] [Related]
15. Influence of deoxynivalenol on the D-glucose transport across the isolated epithelium of different intestinal segments of laying hens. Awad WA, Razzazi-Fazeli E, Böhm J, Zentek J. J Anim Physiol Anim Nutr (Berl); 2007 Jun 05; 91(5-6):175-80. PubMed ID: 17516937 [Abstract] [Full Text] [Related]
16. Sodium-independent low-affinity D-glucose transport by human sodium/D-glucose cotransporter 1: critical role of tryptophan 561. Kumar A, Tyagi NK, Goyal P, Pandey D, Siess W, Kinne RK. Biochemistry; 2007 Mar 13; 46(10):2758-66. PubMed ID: 17288452 [Abstract] [Full Text] [Related]
17. Divalent cations reduce the electrogenic transport of monovalent cations across rumen epithelium. Leonhard-Marek S. J Comp Physiol B; 2002 Oct 13; 172(7):635-41. PubMed ID: 12355232 [Abstract] [Full Text] [Related]
18. Confocal microscopy study of the different patterns of 2-NBDG uptake in rabbit enterocytes in the apical and basal zone. Román Y, Alfonso A, Louzao MC, Vieytes MR, Botana LM. Pflugers Arch; 2001 Nov 13; 443(2):234-9. PubMed ID: 11713649 [Abstract] [Full Text] [Related]
20. Enhanced absorption of 3-O-methyl-D-glucose through the small intestine of rats administered retinyl palmitate. Tomimatsu T, Horie T. Res Commun Mol Pathol Pharmacol; 2000 Nov 13; 107(5-6):349-60. PubMed ID: 11589362 [Abstract] [Full Text] [Related] Page: [Next] [New Search]