These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


499 related items for PubMed ID: 12355251

  • 1. Sphingomyelin composition and physical asymmetries in native acetylcholine receptor-rich membranes.
    Bonini IC, Antollini SS, Gutiérrez-Merino C, Barrantes FJ.
    Eur Biophys J; 2002 Oct; 31(6):417-27. PubMed ID: 12355251
    [Abstract] [Full Text] [Related]

  • 2. Sphingomyelinase induces lipid microdomain formation in a fluid phosphatidylcholine/sphingomyelin membrane.
    Holopainen JM, Subramanian M, Kinnunen PK.
    Biochemistry; 1998 Dec 15; 37(50):17562-70. PubMed ID: 9860872
    [Abstract] [Full Text] [Related]

  • 3. Physical state of bulk and protein-associated lipid in nicotinic acetylcholine receptor-rich membrane studied by laurdan generalized polarization and fluorescence energy transfer.
    Antollini SS, Soto MA, Bonini de Romanelli I, Gutiérrez-Merino C, Sotomayor P, Barrantes FJ.
    Biophys J; 1996 Mar 15; 70(3):1275-84. PubMed ID: 8785283
    [Abstract] [Full Text] [Related]

  • 4. Nicotinic acetylcholine receptor induces lateral segregation of phosphatidic acid and phosphatidylcholine in reconstituted membranes.
    Wenz JJ, Barrantes FJ.
    Biochemistry; 2005 Jan 11; 44(1):398-410. PubMed ID: 15628882
    [Abstract] [Full Text] [Related]

  • 5. Detergent-resistant, ceramide-enriched domains in sphingomyelin/ceramide bilayers.
    Sot J, Bagatolli LA, Goñi FM, Alonso A.
    Biophys J; 2006 Feb 01; 90(3):903-14. PubMed ID: 16284266
    [Abstract] [Full Text] [Related]

  • 6. Interaction of lipids and ligands with nicotinic acetylcholine receptor vesicles assessed by electron paramagnetic resonance spectroscopy.
    Arias HR.
    Methods Mol Biol; 2010 Feb 01; 606():291-318. PubMed ID: 20013404
    [Abstract] [Full Text] [Related]

  • 7. Investigation of interaction of Leu-enkephalin with lipid membranes.
    Liu S, Shibata A, Ueno S, Xu F, Baba Y, Jiang D, Li Y.
    Colloids Surf B Biointerfaces; 2006 Mar 15; 48(2):148-58. PubMed ID: 16542826
    [Abstract] [Full Text] [Related]

  • 8. Interactions of the nicotinic acetylcholine receptor transmembrane segments with the lipid bilayer in native receptor-rich membranes.
    Dreger M, Krauss M, Herrmann A, Hucho F.
    Biochemistry; 1997 Jan 28; 36(4):839-47. PubMed ID: 9020782
    [Abstract] [Full Text] [Related]

  • 9. Structural basis for lipid modulation of nicotinic acetylcholine receptor function.
    Barrantes FJ.
    Brain Res Brain Res Rev; 2004 Dec 28; 47(1-3):71-95. PubMed ID: 15572164
    [Abstract] [Full Text] [Related]

  • 10. Fluorescence and molecular dynamics studies of the acetylcholine receptor gammaM4 transmembrane peptide in reconstituted systems.
    Antollini SS, Xu Y, Jiang H, Barrantes FJ.
    Mol Membr Biol; 2005 Dec 28; 22(6):471-83. PubMed ID: 16373319
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Effects of sphingomyelin, cholesterol and zinc ions on the binding, insertion and aggregation of the amyloid Abeta(1-40) peptide in solid-supported lipid bilayers.
    Devanathan S, Salamon Z, Lindblom G, Gröbner G, Tollin G.
    FEBS J; 2006 Apr 28; 273(7):1389-402. PubMed ID: 16689927
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Cholesterol depletion activates rapid internalization of submicron-sized acetylcholine receptor domains at the cell membrane.
    Borroni V, Baier CJ, Lang T, Bonini I, White MM, Garbus I, Barrantes FJ.
    Mol Membr Biol; 2007 Apr 28; 24(1):1-15. PubMed ID: 17453409
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Preferential distribution of the fluorescent phospholipid probes NBD-phosphatidylcholine and rhodamine-phosphatidylethanolamine in the exofacial leaflet of acetylcholine receptor-rich membranes from Torpedo marmorata.
    Gutiérrez-Merino C, Bonini de Romanelli IC, Pietrasanta LI, Barrantes FJ.
    Biochemistry; 1995 Apr 11; 34(14):4846-55. PubMed ID: 7718591
    [Abstract] [Full Text] [Related]

  • 18. Elucidation of biphasic alterations on acetylcholinesterase (AChE) activity and membrane fluidity in the structure-functional effects of tetracaine on AChE-associated membrane vesicles.
    Chen CH, Zuklie BM, Roth LG.
    Arch Biochem Biophys; 1998 Mar 01; 351(1):135-40. PubMed ID: 9500847
    [Abstract] [Full Text] [Related]

  • 19. Is a fluid-mosaic model of biological membranes fully relevant? Studies on lipid organization in model and biological membranes.
    Wiśniewska A, Draus J, Subczynski WK.
    Cell Mol Biol Lett; 2003 Mar 01; 8(1):147-59. PubMed ID: 12655369
    [Abstract] [Full Text] [Related]

  • 20. Does general anesthetic-induced desensitization of the Torpedo acetylcholine receptor correlate with lipid disordering?
    Firestone LL, Alifimoff JK, Miller KW.
    Mol Pharmacol; 1994 Sep 01; 46(3):508-15. PubMed ID: 7935332
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 25.