These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


167 related items for PubMed ID: 12356325

  • 1. Kinetic analysis of interdomain coupling in a lidless variant of the molecular chaperone DnaK: DnaK's lid inhibits transition to the low affinity state.
    Slepenkov SV, Witt SN.
    Biochemistry; 2002 Oct 08; 41(40):12224-35. PubMed ID: 12356325
    [Abstract] [Full Text] [Related]

  • 2. Importance of the D and E helices of the molecular chaperone DnaK for ATP binding and substrate release.
    Slepenkov SV, Patchen B, Peterson KM, Witt SN.
    Biochemistry; 2003 May 20; 42(19):5867-76. PubMed ID: 12741845
    [Abstract] [Full Text] [Related]

  • 3. Deletion of DnaK's lid strengthens binding to the nucleotide exchange factor, GrpE: a kinetic and thermodynamic analysis.
    Chesnokova LS, Slepenkov SV, Protasevich II, Sehorn MG, Brouillette CG, Witt SN.
    Biochemistry; 2003 Aug 05; 42(30):9028-40. PubMed ID: 12885236
    [Abstract] [Full Text] [Related]

  • 4. Characterization of a lidless form of the molecular chaperone DnaK: deletion of the lid increases peptide on- and off-rate constants.
    Buczynski G, Slepenkov SV, Sehorn MG, Witt SN.
    J Biol Chem; 2001 Jul 20; 276(29):27231-6. PubMed ID: 11352903
    [Abstract] [Full Text] [Related]

  • 5. Interdomain communication in the molecular chaperone DnaK.
    Han W, Christen P.
    Biochem J; 2003 Feb 01; 369(Pt 3):627-34. PubMed ID: 12383055
    [Abstract] [Full Text] [Related]

  • 6. Kinetics of the reactions of the Escherichia coli molecular chaperone DnaK with ATP: evidence that a three-step reaction precedes ATP hydrolysis.
    Slepenkov SV, Witt SN.
    Biochemistry; 1998 Jan 27; 37(4):1015-24. PubMed ID: 9454592
    [Abstract] [Full Text] [Related]

  • 7. Sequence-specific rates of interaction of target peptides with the molecular chaperones DnaK and DnaJ.
    Pierpaoli EV, Gisler SM, Christen P.
    Biochemistry; 1998 Nov 24; 37(47):16741-8. PubMed ID: 9843444
    [Abstract] [Full Text] [Related]

  • 8. Peptide-induced conformational changes in the molecular chaperone DnaK.
    Slepenkov SV, Witt SN.
    Biochemistry; 1998 Nov 24; 37(47):16749-56. PubMed ID: 9843445
    [Abstract] [Full Text] [Related]

  • 9. The second step of ATP binding to DnaK induces peptide release.
    Theyssen H, Schuster HP, Packschies L, Bukau B, Reinstein J.
    J Mol Biol; 1996 Nov 15; 263(5):657-70. PubMed ID: 8947566
    [Abstract] [Full Text] [Related]

  • 10. The power stroke of the DnaK/DnaJ/GrpE molecular chaperone system.
    Pierpaoli EV, Sandmeier E, Baici A, Schönfeld HJ, Gisler S, Christen P.
    J Mol Biol; 1997 Jun 27; 269(5):757-68. PubMed ID: 9223639
    [Abstract] [Full Text] [Related]

  • 11. Kinetic characterization of the ATPase cycle of the DnaK molecular chaperone.
    Russell R, Jordan R, McMacken R.
    Biochemistry; 1998 Jan 13; 37(2):596-607. PubMed ID: 9425082
    [Abstract] [Full Text] [Related]

  • 12. The antibacterial peptide pyrrhocoricin inhibits the ATPase actions of DnaK and prevents chaperone-assisted protein folding.
    Kragol G, Lovas S, Varadi G, Condie BA, Hoffmann R, Otvos L.
    Biochemistry; 2001 Mar 13; 40(10):3016-26. PubMed ID: 11258915
    [Abstract] [Full Text] [Related]

  • 13. Mutations in the substrate binding domain of the Escherichia coli 70 kDa molecular chaperone, DnaK, which alter substrate affinity or interdomain coupling.
    Montgomery DL, Morimoto RI, Gierasch LM.
    J Mol Biol; 1999 Feb 26; 286(3):915-32. PubMed ID: 10024459
    [Abstract] [Full Text] [Related]

  • 14. The allosteric transition in DnaK probed by infrared difference spectroscopy. Concerted ATP-induced rearrangement of the substrate binding domain.
    Moro F, Fernández-Sáiz V, Muga A.
    Protein Sci; 2006 Feb 26; 15(2):223-33. PubMed ID: 16384998
    [Abstract] [Full Text] [Related]

  • 15. Severe oxidative stress causes inactivation of DnaK and activation of the redox-regulated chaperone Hsp33.
    Winter J, Linke K, Jatzek A, Jakob U.
    Mol Cell; 2005 Feb 04; 17(3):381-92. PubMed ID: 15694339
    [Abstract] [Full Text] [Related]

  • 16. Nucleotide-induced conformational changes in the ATPase and substrate binding domains of the DnaK chaperone provide evidence for interdomain communication.
    Buchberger A, Theyssen H, Schröder H, McCarty JS, Virgallita G, Milkereit P, Reinstein J, Bukau B.
    J Biol Chem; 1995 Jul 14; 270(28):16903-10. PubMed ID: 7622507
    [Abstract] [Full Text] [Related]

  • 17. Immediate response of the DnaK molecular chaperone system to heat shock.
    Siegenthaler RK, Grimshaw JP, Christen P.
    FEBS Lett; 2004 Mar 26; 562(1-3):105-10. PubMed ID: 15044009
    [Abstract] [Full Text] [Related]

  • 18. Multistep mechanism of substrate binding determines chaperone activity of Hsp70.
    Mayer MP, Schröder H, Rüdiger S, Paal K, Laufen T, Bukau B.
    Nat Struct Biol; 2000 Jul 26; 7(7):586-93. PubMed ID: 10876246
    [Abstract] [Full Text] [Related]

  • 19. Kinetic evidence for peptide-induced oligomerization of the molecular chaperone DnaK at heat shock temperatures.
    Farr CD, Witt SN.
    Biochemistry; 1997 Sep 02; 36(35):10793-800. PubMed ID: 9271511
    [Abstract] [Full Text] [Related]

  • 20. A disulfide-bonded DnaK dimer is maintained in an ATP-bound state.
    Liu Q, Li H, Yang Y, Tian X, Su J, Zhou L, Liu Q.
    Cell Stress Chaperones; 2017 Mar 02; 22(2):201-212. PubMed ID: 27975204
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.