These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
391 related items for PubMed ID: 12358535
1. Determination of multiple torsion-angle constraints in U-(13)C,(15)N-labeled peptides: 3D (1)H-(15)N-(13)C-(1)H dipolar chemical shift NMR spectroscopy in rotating solids. Rienstra CM, Hohwy M, Mueller LJ, Jaroniec CP, Reif B, Griffin RG. J Am Chem Soc; 2002 Oct 09; 124(40):11908-22. PubMed ID: 12358535 [Abstract] [Full Text] [Related]
2. Measurement of multiple psi torsion angles in uniformly 13C,15N-labeled alpha-spectrin SH3 domain using 3D 15N-13C-13C-15N MAS dipolar-chemical shift correlation spectroscopy. Ladizhansky V, Jaroniec CP, Diehl A, Oschkinat H, Griffin RG. J Am Chem Soc; 2003 Jun 04; 125(22):6827-33. PubMed ID: 12769594 [Abstract] [Full Text] [Related]
3. 3D TEDOR NMR experiments for the simultaneous measurement of multiple carbon-nitrogen distances in uniformly (13)C,(15)N-labeled solids. Jaroniec CP, Filip C, Griffin RG. J Am Chem Soc; 2002 Sep 11; 124(36):10728-42. PubMed ID: 12207528 [Abstract] [Full Text] [Related]
4. NMR determination of the torsion angle psi in alpha-helical peptides and proteins: the HCCN dipolar correlation experiment. Ladizhansky V, Veshtort M, Griffin RG. J Magn Reson; 2002 Feb 11; 154(2):317-24. PubMed ID: 11846590 [Abstract] [Full Text] [Related]
5. Determination of methyl 13C-15N dipolar couplings in peptides and proteins by three-dimensional and four-dimensional magic-angle spinning solid-state NMR spectroscopy. Helmus JJ, Nadaud PS, Höfer N, Jaroniec CP. J Chem Phys; 2008 Feb 07; 128(5):052314. PubMed ID: 18266431 [Abstract] [Full Text] [Related]
6. Backbone conformational constraints in a microcrystalline U-15N-labeled protein by 3D dipolar-shift solid-state NMR spectroscopy. Franks WT, Wylie BJ, Stellfox SA, Rienstra CM. J Am Chem Soc; 2006 Mar 15; 128(10):3154-5. PubMed ID: 16522090 [Abstract] [Full Text] [Related]
7. Determination of calpha chemical shift tensor orientation in peptides by dipolar-modulated chemical shift recoupling NMR spectroscopy. Yao X, Hong M. J Am Chem Soc; 2002 Mar 20; 124(11):2730-8. PubMed ID: 11890824 [Abstract] [Full Text] [Related]
8. Band-selective carbonyl to aliphatic side chain 13C-13C distance measurements in U-13C,15N-labeled solid peptides by magic angle spinning NMR. Ladizhansky V, Griffin RG. J Am Chem Soc; 2004 Jan 28; 126(3):948-58. PubMed ID: 14733572 [Abstract] [Full Text] [Related]
9. Solid-state NMR and quantum chemical investigations of 13Calpha shielding tensor magnitudes and orientations in peptides: determining phi and psi torsion angles. Wi S, Sun H, Oldfield E, Hong M. J Am Chem Soc; 2005 May 04; 127(17):6451-8. PubMed ID: 15853353 [Abstract] [Full Text] [Related]
10. Efficient 15N-13C Polarization Transfer by Third-Spin-Assisted Pulsed Cross-Polarization Magic-Angle-Spinning NMR for Protein Structure Determination. Gelenter MD, Hong M. J Phys Chem B; 2018 Sep 06; 122(35):8367-8379. PubMed ID: 30106585 [Abstract] [Full Text] [Related]
11. Site-specific ϕ- and ψ-torsion angle determination in a uniformly/extensively 13C- and 15N-labeled peptide. Wi S, Spano J. J Magn Reson; 2011 Oct 06; 212(2):431-9. PubMed ID: 21889381 [Abstract] [Full Text] [Related]
12. Main-chain conformational features at different conformations of the side-chains in proteins. Chakrabarti P, Pal D. Protein Eng; 1998 Aug 06; 11(8):631-47. PubMed ID: 9749916 [Abstract] [Full Text] [Related]
13. C(alpha) chemical shift tensors in helical peptides by dipolar-modulated chemical shift recoupling NMR. Yao X, Yamaguchi S, Hong M. J Biomol NMR; 2002 Sep 06; 24(1):51-62. PubMed ID: 12449418 [Abstract] [Full Text] [Related]
14. Solid-state NMR spectroscopy method for determination of the backbone torsion angle psi in peptides with isolated uniformly labeled residues. Chan JC, Tycko R. J Am Chem Soc; 2003 Oct 01; 125(39):11828-9. PubMed ID: 14505399 [Abstract] [Full Text] [Related]
15. Structure determination of a peptide model of the repeated helical domain in Samia cynthia ricini silk fibroin before spinning by a combination of advanced solid-state NMR methods. Nakazawa Y, Asakura T. J Am Chem Soc; 2003 Jun 18; 125(24):7230-7. PubMed ID: 12797796 [Abstract] [Full Text] [Related]
16. NH-NH vector correlation in peptides by solid-state NMR. Reif B, Hohwy M, Jaroniec CP, Rienstra CM, Griffin RG. J Magn Reson; 2000 Jul 18; 145(1):132-41. PubMed ID: 10873504 [Abstract] [Full Text] [Related]
17. Determination of solid-state NMR structures of proteins by means of three-dimensional 15N-13C-13C dipolar correlation spectroscopy and chemical shift analysis. Castellani F, van Rossum BJ, Diehl A, Rehbein K, Oschkinat H. Biochemistry; 2003 Oct 07; 42(39):11476-83. PubMed ID: 14516199 [Abstract] [Full Text] [Related]
18. Accurate measurement of heteronuclear dipolar couplings by phase-alternating R-symmetry (PARS) sequences in magic angle spinning NMR spectroscopy. Hou G, Lu X, Vega AJ, Polenova T. J Chem Phys; 2014 Sep 14; 141(10):104202. PubMed ID: 25217909 [Abstract] [Full Text] [Related]
19. Accurate prediction of protein torsion angles using chemical shifts and sequence homology. Neal S, Berjanskii M, Zhang H, Wishart DS. Magn Reson Chem; 2006 Jul 14; 44 Spec No():S158-67. PubMed ID: 16823900 [Abstract] [Full Text] [Related]
20. Signal assignments and chemical-shift structural analysis of uniformly 13C, 15N-labeled peptide, mastoparan-X, by multidimensional solid-state NMR under magic-angle spinning. Fujiwara T, Todokoro Y, Yanagishita H, Tawarayama M, Kohno T, Wakamatsu K, Akutsu H. J Biomol NMR; 2004 Apr 14; 28(4):311-25. PubMed ID: 14872124 [Abstract] [Full Text] [Related] Page: [Next] [New Search]