These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


182 related items for PubMed ID: 12361810

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Endothelial transcytosis of myeloperoxidase confers specificity to vascular ECM proteins as targets of tyrosine nitration.
    Baldus S, Eiserich JP, Mani A, Castro L, Figueroa M, Chumley P, Ma W, Tousson A, White CR, Bullard DC, Brennan ML, Lusis AJ, Moore KP, Freeman BA.
    J Clin Invest; 2001 Dec; 108(12):1759-70. PubMed ID: 11748259
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Tyrosine 192 in apolipoprotein A-I is the major site of nitration and chlorination by myeloperoxidase, but only chlorination markedly impairs ABCA1-dependent cholesterol transport.
    Shao B, Bergt C, Fu X, Green P, Voss JC, Oda MN, Oram JF, Heinecke JW.
    J Biol Chem; 2005 Feb 18; 280(7):5983-93. PubMed ID: 15574409
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Myeloperoxidase and horseradish peroxidase catalyze tyrosine nitration in proteins from nitrite and hydrogen peroxide.
    Sampson JB, Ye Y, Rosen H, Beckman JS.
    Arch Biochem Biophys; 1998 Aug 15; 356(2):207-13. PubMed ID: 9705211
    [Abstract] [Full Text] [Related]

  • 7. Human atherosclerotic intima and blood of patients with established coronary artery disease contain high density lipoprotein damaged by reactive nitrogen species.
    Pennathur S, Bergt C, Shao B, Byun J, Kassim SY, Singh P, Green PS, McDonald TO, Brunzell J, Chait A, Oram JF, O'brien K, Geary RL, Heinecke JW.
    J Biol Chem; 2004 Oct 08; 279(41):42977-83. PubMed ID: 15292228
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Myeloperoxidase-associated tyrosine nitration after intratracheal administration of lipopolysaccharide in rats.
    Hataishi R, Kobayashi H, Takahashi Y, Hirano S, Zapol WM, Jones RC.
    Anesthesiology; 2002 Oct 08; 97(4):887-95. PubMed ID: 12357155
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Cytochrome c: a catalyst and target of nitrite-hydrogen peroxide-dependent protein nitration.
    Castro L, Eiserich JP, Sweeney S, Radi R, Freeman BA.
    Arch Biochem Biophys; 2004 Jan 01; 421(1):99-107. PubMed ID: 14678790
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Assessment of myeloperoxidase activity by the conversion of hydroethidine to 2-chloroethidium.
    Maghzal GJ, Cergol KM, Shengule SR, Suarna C, Newington D, Kettle AJ, Payne RJ, Stocker R.
    J Biol Chem; 2014 Feb 28; 289(9):5580-95. PubMed ID: 24436331
    [Abstract] [Full Text] [Related]

  • 14. Formation of reactive nitrogen species during peroxidase-catalyzed oxidation of nitrite. A potential additional mechanism of nitric oxide-dependent toxicity.
    van der Vliet A, Eiserich JP, Halliwell B, Cross CE.
    J Biol Chem; 1997 Mar 21; 272(12):7617-25. PubMed ID: 9065416
    [Abstract] [Full Text] [Related]

  • 15. Myeloperoxidase-catalyzed oxidation of tyrosine.
    Tien M.
    Arch Biochem Biophys; 1999 Jul 01; 367(1):61-6. PubMed ID: 10375399
    [Abstract] [Full Text] [Related]

  • 16. Myeloperoxidase targets apolipoprotein A-I, the major high density lipoprotein protein, for site-specific oxidation in human atherosclerotic lesions.
    Shao B, Pennathur S, Heinecke JW.
    J Biol Chem; 2012 Feb 24; 287(9):6375-86. PubMed ID: 22219194
    [Abstract] [Full Text] [Related]

  • 17. Detailed protocol to assess in vivo and ex vivo myeloperoxidase activity in mouse models of vascular inflammation and disease using hydroethidine.
    Talib J, Maghzal GJ, Cheng D, Stocker R.
    Free Radic Biol Med; 2016 Aug 24; 97():124-135. PubMed ID: 27184954
    [Abstract] [Full Text] [Related]

  • 18. Myeloperoxidase and its contributory role in inflammatory vascular disease.
    Lau D, Baldus S.
    Pharmacol Ther; 2006 Jul 24; 111(1):16-26. PubMed ID: 16476484
    [Abstract] [Full Text] [Related]

  • 19. Site-specific nitration of apolipoprotein A-I at tyrosine 166 is both abundant within human atherosclerotic plaque and dysfunctional.
    DiDonato JA, Aulak K, Huang Y, Wagner M, Gerstenecker G, Topbas C, Gogonea V, DiDonato AJ, Tang WHW, Mehl RA, Fox PL, Plow EF, Smith JD, Fisher EA, Hazen SL.
    J Biol Chem; 2014 Apr 11; 289(15):10276-10292. PubMed ID: 24558038
    [Abstract] [Full Text] [Related]

  • 20. The potentiation of myeloperoxidase activity by the glycosaminoglycan-dependent binding of myeloperoxidase to proteins of the extracellular matrix.
    Kubala L, Kolářová H, Víteček J, Kremserová S, Klinke A, Lau D, Chapman AL, Baldus S, Eiserich JP.
    Biochim Biophys Acta; 2013 Oct 11; 1830(10):4524-36. PubMed ID: 23707661
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.