These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


302 related items for PubMed ID: 12368855

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Temporally and spatially coordinated roles for Rho, Rac, Cdc42 and their effectors in growth cone guidance by a physiological electric field.
    Rajnicek AM, Foubister LE, McCaig CD.
    J Cell Sci; 2006 May 01; 119(Pt 9):1723-35. PubMed ID: 16595546
    [Abstract] [Full Text] [Related]

  • 8. BDNF increases synapse density in dendrites of developing tectal neurons in vivo.
    Sanchez AL, Matthews BJ, Meynard MM, Hu B, Javed S, Cohen Cory S.
    Development; 2006 Jul 01; 133(13):2477-86. PubMed ID: 16728478
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Homer proteins shape Xenopus optic tectal cell dendritic arbor development in vivo.
    Van Keuren-Jensen KR, Cline HT.
    Dev Neurobiol; 2008 Sep 15; 68(11):1315-24. PubMed ID: 18636533
    [Abstract] [Full Text] [Related]

  • 11. Rho family GTPases and dendrite plasticity.
    Negishi M, Katoh H.
    Neuroscientist; 2005 Jun 15; 11(3):187-91. PubMed ID: 15911868
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Time-lapse in vivo imaging of the morphological development of Xenopus optic tectal interneurons.
    Wu GY, Cline HT.
    J Comp Neurol; 2003 May 12; 459(4):392-406. PubMed ID: 12687706
    [Abstract] [Full Text] [Related]

  • 14. Stabilization of dendritic arbor structure in vivo by CaMKII.
    Wu GY, Cline HT.
    Science; 1998 Jan 09; 279(5348):222-6. PubMed ID: 9422694
    [Abstract] [Full Text] [Related]

  • 15. Enhanced visual experience rehabilitates the injured brain in Xenopus tadpoles in an NMDAR-dependent manner.
    Gambrill AC, Faulkner RL, McKeown CR, Cline HT.
    J Neurophysiol; 2019 Jan 01; 121(1):306-320. PubMed ID: 30517041
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Impact of maternal n-3 polyunsaturated fatty acid deficiency on dendritic arbor morphology and connectivity of developing Xenopus laevis central neurons in vivo.
    Igarashi M, Santos RA, Cohen-Cory S.
    J Neurosci; 2015 Apr 15; 35(15):6079-92. PubMed ID: 25878281
    [Abstract] [Full Text] [Related]

  • 18. Regulation of dendritic spine morphology by the rho family of small GTPases: antagonistic roles of Rac and Rho.
    Tashiro A, Minden A, Yuste R.
    Cereb Cortex; 2000 Oct 15; 10(10):927-38. PubMed ID: 11007543
    [Abstract] [Full Text] [Related]

  • 19. Visual stimuli-induced LTD of GABAergic synapses mediated by presynaptic NMDA receptors.
    Lien CC, Mu Y, Vargas-Caballero M, Poo MM.
    Nat Neurosci; 2006 Mar 15; 9(3):372-80. PubMed ID: 16474391
    [Abstract] [Full Text] [Related]

  • 20. Enhanced visual activity in vivo forms nascent synapses in the developing retinotectal projection.
    Aizenman CD, Cline HT.
    J Neurophysiol; 2007 Apr 15; 97(4):2949-57. PubMed ID: 17267761
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 16.