These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
273 related items for PubMed ID: 12368903
1. Structural insights into the membrane-anchoring mechanism of a cholesterol-dependent cytolysin. Ramachandran R, Heuck AP, Tweten RK, Johnson AE. Nat Struct Biol; 2002 Nov; 9(11):823-7. PubMed ID: 12368903 [Abstract] [Full Text] [Related]
2. The mechanism of pore assembly for a cholesterol-dependent cytolysin: formation of a large prepore complex precedes the insertion of the transmembrane beta-hairpins. Shepard LA, Shatursky O, Johnson AE, Tweten RK. Biochemistry; 2000 Aug 22; 39(33):10284-93. PubMed ID: 10956018 [Abstract] [Full Text] [Related]
3. R468A mutation in perfringolysin O destabilizes toxin structure and induces membrane fusion. Kulma M, Kacprzyk-Stokowiec A, Kwiatkowska K, Traczyk G, Sobota A, Dadlez M. Biochim Biophys Acta Biomembr; 2017 Jun 22; 1859(6):1075-1088. PubMed ID: 28263714 [Abstract] [Full Text] [Related]
4. The cholesterol-dependent cytolysin family of gram-positive bacterial toxins. Heuck AP, Moe PC, Johnson BB. Subcell Biochem; 2010 Jun 22; 51():551-77. PubMed ID: 20213558 [Abstract] [Full Text] [Related]
5. Vertical collapse of a cytolysin prepore moves its transmembrane beta-hairpins to the membrane. Czajkowsky DM, Hotze EM, Shao Z, Tweten RK. EMBO J; 2004 Aug 18; 23(16):3206-15. PubMed ID: 15297878 [Abstract] [Full Text] [Related]
6. Identification of a membrane-spanning domain of the thiol-activated pore-forming toxin Clostridium perfringens perfringolysin O: an alpha-helical to beta-sheet transition identified by fluorescence spectroscopy. Shepard LA, Heuck AP, Hamman BD, Rossjohn J, Parker MW, Ryan KR, Johnson AE, Tweten RK. Biochemistry; 1998 Oct 13; 37(41):14563-74. PubMed ID: 9772185 [Abstract] [Full Text] [Related]
7. The mechanism of membrane insertion for a cholesterol-dependent cytolysin: a novel paradigm for pore-forming toxins. Shatursky O, Heuck AP, Shepard LA, Rossjohn J, Parker MW, Johnson AE, Tweten RK. Cell; 1999 Oct 29; 99(3):293-9. PubMed ID: 10555145 [Abstract] [Full Text] [Related]
9. The domains of a cholesterol-dependent cytolysin undergo a major FRET-detected rearrangement during pore formation. Ramachandran R, Tweten RK, Johnson AE. Proc Natl Acad Sci U S A; 2005 May 17; 102(20):7139-44. PubMed ID: 15878993 [Abstract] [Full Text] [Related]
10. Crucial role of perfringolysin O D1 domain in orchestrating structural transitions leading to membrane-perforating pores: a hydrogen-deuterium exchange study. Kacprzyk-Stokowiec A, Kulma M, Traczyk G, Kwiatkowska K, Sobota A, Dadlez M. J Biol Chem; 2014 Oct 10; 289(41):28738-52. PubMed ID: 25164812 [Abstract] [Full Text] [Related]
11. The Cholesterol-dependent Cytolysin Membrane-binding Interface Discriminates Lipid Environments of Cholesterol to Support β-Barrel Pore Insertion. Farrand AJ, Hotze EM, Sato TK, Wade KR, Wimley WC, Johnson AE, Tweten RK. J Biol Chem; 2015 Jul 17; 290(29):17733-17744. PubMed ID: 26032415 [Abstract] [Full Text] [Related]
12. Assembly and topography of the prepore complex in cholesterol-dependent cytolysins. Heuck AP, Tweten RK, Johnson AE. J Biol Chem; 2003 Aug 15; 278(33):31218-25. PubMed ID: 12777381 [Abstract] [Full Text] [Related]
13. The cholesterol-dependent cytolysin signature motif: a critical element in the allosteric pathway that couples membrane binding to pore assembly. Dowd KJ, Farrand AJ, Tweten RK. PLoS Pathog; 2012 Aug 15; 8(7):e1002787. PubMed ID: 22792065 [Abstract] [Full Text] [Related]
14. Phospholipid hydrolysis caused by Clostridium perfringens α-toxin facilitates the targeting of perfringolysin O to membrane bilayers. Moe PC, Heuck AP. Biochemistry; 2010 Nov 09; 49(44):9498-507. PubMed ID: 20886855 [Abstract] [Full Text] [Related]
15. Mechanism of membrane insertion of a multimeric beta-barrel protein: perfringolysin O creates a pore using ordered and coupled conformational changes. Heuck AP, Hotze EM, Tweten RK, Johnson AE. Mol Cell; 2000 Nov 09; 6(5):1233-42. PubMed ID: 11106760 [Abstract] [Full Text] [Related]
16. Interaction of theta-toxin (perfringolysin O), a cholesterol-binding cytolysin, with liposomal membranes: change in the aromatic side chains upon binding and insertion. Nakamura M, Sekino N, Iwamoto M, Ohno-Iwashita Y. Biochemistry; 1995 May 16; 34(19):6513-20. PubMed ID: 7756282 [Abstract] [Full Text] [Related]
17. Perfringolysin O structure and mechanism of pore formation as a paradigm for cholesterol-dependent cytolysins. Johnson BB, Heuck AP. Subcell Biochem; 2014 May 16; 80():63-81. PubMed ID: 24798008 [Abstract] [Full Text] [Related]
18. Perfringolysin O: The Underrated Clostridium perfringens Toxin? Verherstraeten S, Goossens E, Valgaeren B, Pardon B, Timbermont L, Haesebrouck F, Ducatelle R, Deprez P, Wade KR, Tweten R, Van Immerseel F. Toxins (Basel); 2015 May 14; 7(5):1702-21. PubMed ID: 26008232 [Abstract] [Full Text] [Related]
19. The cholesterol-dependent cytolysins. Tweten RK, Parker MW, Johnson AE. Curr Top Microbiol Immunol; 2001 May 14; 257():15-33. PubMed ID: 11417120 [Abstract] [Full Text] [Related]
20. Fine-tuning of the stability of β-strands by Y181 in perfringolysin O directs the prepore to pore transition. Kulma M, Kacprzyk-Stokowiec A, Traczyk G, Kwiatkowska K, Dadlez M. Biochim Biophys Acta Biomembr; 2019 Jan 14; 1861(1):110-122. PubMed ID: 30463694 [Abstract] [Full Text] [Related] Page: [Next] [New Search]