These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


161 related items for PubMed ID: 12369901

  • 1. Protein thiol modification of glyceraldehyde-3-phosphate dehydrogenase and caspase-3 by nitric oxide.
    Brüne B, Mohr S.
    Curr Protein Pept Sci; 2001 Mar; 2(1):61-72. PubMed ID: 12369901
    [Abstract] [Full Text] [Related]

  • 2. Protein thiol modification of glyceraldehyde-3-phosphate dehydrogenase as a target for nitric oxide signaling.
    Brüne B, Lapetina EG.
    Genet Eng (N Y); 1995 Mar; 17():149-64. PubMed ID: 7540026
    [Abstract] [Full Text] [Related]

  • 3. Mechanism of covalent modification of glyceraldehyde-3-phosphate dehydrogenase at its active site thiol by nitric oxide, peroxynitrite and related nitrosating agents.
    Mohr S, Stamler JS, Brüne B.
    FEBS Lett; 1994 Jul 18; 348(3):223-7. PubMed ID: 8034046
    [Abstract] [Full Text] [Related]

  • 4. Critical role of sulfenic acid formation of thiols in the inactivation of glyceraldehyde-3-phosphate dehydrogenase by nitric oxide.
    Ishii T, Sunami O, Nakajima H, Nishio H, Takeuchi T, Hata F.
    Biochem Pharmacol; 1999 Jul 01; 58(1):133-43. PubMed ID: 10403526
    [Abstract] [Full Text] [Related]

  • 5. Regulation of plant cytosolic glyceraldehyde 3-phosphate dehydrogenase isoforms by thiol modifications.
    Holtgrefe S, Gohlke J, Starmann J, Druce S, Klocke S, Altmann B, Wojtera J, Lindermayr C, Scheibe R.
    Physiol Plant; 2008 Jun 01; 133(2):211-28. PubMed ID: 18298409
    [Abstract] [Full Text] [Related]

  • 6. Nitric oxide-induced S-glutathionylation and inactivation of glyceraldehyde-3-phosphate dehydrogenase.
    Mohr S, Hallak H, de Boitte A, Lapetina EG, Brüne B.
    J Biol Chem; 1999 Apr 02; 274(14):9427-30. PubMed ID: 10092623
    [Abstract] [Full Text] [Related]

  • 7. Evidence for thiol/disulfide exchange reactions between tubulin and glyceraldehyde-3-phosphate dehydrogenase.
    Landino LM, Hagedorn TD, Kennett KL.
    Cytoskeleton (Hoboken); 2014 Dec 02; 71(12):707-18. PubMed ID: 25545749
    [Abstract] [Full Text] [Related]

  • 8. Thiols mediate superoxide-dependent NADH modification of glyceraldehyde-3-phosphate dehydrogenase.
    Rivera-Nieves J, Thompson WC, Levine RL, Moss J.
    J Biol Chem; 1999 Jul 09; 274(28):19525-31. PubMed ID: 10391884
    [Abstract] [Full Text] [Related]

  • 9. Protein thiol modification and apoptotic cell death as cGMP-independent nitric oxide (NO) signaling pathways.
    Brüne B, Mohr S, Messmer UK.
    Rev Physiol Biochem Pharmacol; 1996 Jul 09; 127():1-30. PubMed ID: 8533007
    [Abstract] [Full Text] [Related]

  • 10. S-glutathionylation of glyceraldehyde-3-phosphate dehydrogenase induces formation of C150-C154 intrasubunit disulfide bond in the active site of the enzyme.
    Barinova KV, Serebryakova MV, Muronetz VI, Schmalhausen EV.
    Biochim Biophys Acta Gen Subj; 2017 Dec 09; 1861(12):3167-3177. PubMed ID: 28935607
    [Abstract] [Full Text] [Related]

  • 11. Posttranslational modification of glyceraldehyde-3-phosphate dehydrogenase by S-nitrosylation and subsequent NADH attachment.
    Mohr S, Stamler JS, Brüne B.
    J Biol Chem; 1996 Feb 23; 271(8):4209-14. PubMed ID: 8626764
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Oxygen free radicals enhance the nitric oxide-induced covalent NAD(+)-linkage to neuronal glyceraldehyde-3-phosphate dehydrogenase.
    Marin P, Maus M, Bockaert J, Glowinski J, Prémont J.
    Biochem J; 1995 Aug 01; 309 ( Pt 3)(Pt 3):891-8. PubMed ID: 7639707
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Novel applications of modification of thiol enzymes and redox-regulated proteins using S-methyl methanethiosulfonate (MMTS).
    Makarov VA, Tikhomirova NK, Savvateeva LV, Petushkova AI, Serebryakova MV, Baksheeva VE, Gorokhovets NV, Zernii EY, Zamyatnin AA.
    Biochim Biophys Acta Proteins Proteom; 2019 Nov 01; 1867(11):140259. PubMed ID: 31376523
    [Abstract] [Full Text] [Related]

  • 18. Nitric oxide and NAD-dependent protein modification.
    McDonald LJ, Moss J.
    Mol Cell Biochem; 1994 Sep 01; 138(1-2):201-6. PubMed ID: 7898464
    [Abstract] [Full Text] [Related]

  • 19. Nitric oxide-induced covalent modification of glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase.
    Brüne B, Lapetina EG.
    Methods Enzymol; 1996 Sep 01; 269():400-7. PubMed ID: 8791669
    [No Abstract] [Full Text] [Related]

  • 20. Active site cysteine-null glyceraldehyde-3-phosphate dehydrogenase (GAPDH) rescues nitric oxide-induced cell death.
    Kubo T, Nakajima H, Nakatsuji M, Itakura M, Kaneshige A, Azuma YT, Inui T, Takeuchi T.
    Nitric Oxide; 2016 Feb 29; 53():13-21. PubMed ID: 26725192
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.