These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


360 related items for PubMed ID: 12370275

  • 1. Lack of prolactin receptor signaling in mice results in lactotroph proliferation and prolactinomas by dopamine-dependent and -independent mechanisms.
    Schuff KG, Hentges ST, Kelly MA, Binart N, Kelly PA, Iuvone PM, Asa SL, Low MJ.
    J Clin Invest; 2002 Oct; 110(7):973-81. PubMed ID: 12370275
    [Abstract] [Full Text] [Related]

  • 2. Pituitary lactotroph adenomas develop after prolonged lactotroph hyperplasia in dopamine D2 receptor-deficient mice.
    Asa SL, Kelly MA, Grandy DK, Low MJ.
    Endocrinology; 1999 Nov; 140(11):5348-55. PubMed ID: 10537166
    [Abstract] [Full Text] [Related]

  • 3. Ovarian dependence for pituitary tumorigenesis in D2 dopamine receptor-deficient mice.
    Hentges ST, Low MJ.
    Endocrinology; 2002 Dec; 143(12):4536-43. PubMed ID: 12446580
    [Abstract] [Full Text] [Related]

  • 4. Autocrine actions of prolactin contribute to the regulation of lactotroph function in vivo.
    Bernard V, Lamothe S, Beau I, Guillou A, Martin A, Le Tissier P, Grattan D, Young J, Binart N.
    FASEB J; 2018 Sep; 32(9):4791-4797. PubMed ID: 29596024
    [Abstract] [Full Text] [Related]

  • 5. Leukemia inhibitory factor regulates prolactin secretion in prolactinoma and lactotroph cells.
    Ben-Shlomo A, Miklovsky I, Ren SG, Yong WH, Heaney AP, Culler MD, Melmed S.
    J Clin Endocrinol Metab; 2003 Feb; 88(2):858-63. PubMed ID: 12574225
    [Abstract] [Full Text] [Related]

  • 6. Inhibitory effects of antivascular endothelial growth factor strategies in experimental dopamine-resistant prolactinomas.
    Luque GM, Perez-Millán MI, Ornstein AM, Cristina C, Becu-Villalobos D.
    J Pharmacol Exp Ther; 2011 Jun; 337(3):766-74. PubMed ID: 21406548
    [Abstract] [Full Text] [Related]

  • 7. Targeting of transforming growth factor-alpha expression to pituitary lactotrophs in transgenic mice results in selective lactotroph proliferation and adenomas.
    McAndrew J, Paterson AJ, Asa SL, McCarthy KJ, Kudlow JE.
    Endocrinology; 1995 Oct; 136(10):4479-88. PubMed ID: 7664668
    [Abstract] [Full Text] [Related]

  • 8. Each individual isoform of the dopamine D2 receptor protects from lactotroph hyperplasia.
    Radl D, De Mei C, Chen E, Lee H, Borrelli E.
    Mol Endocrinol; 2013 Jun; 27(6):953-65. PubMed ID: 23608643
    [Abstract] [Full Text] [Related]

  • 9. Assessment of lactotroph axis functionality in mice: longitudinal monitoring of PRL secretion by ultrasensitive-ELISA.
    Guillou A, Romanò N, Steyn F, Abitbol K, Le Tissier P, Bonnefont X, Chen C, Mollard P, Martin AO.
    Endocrinology; 2015 May; 156(5):1924-30. PubMed ID: 25643154
    [Abstract] [Full Text] [Related]

  • 10. Active and total transforming growth factor-β1 are differentially regulated by dopamine and estradiol in the pituitary.
    Recouvreux MV, Guida MC, Rifkin DB, Becu-Villalobos D, Díaz-Torga G.
    Endocrinology; 2011 Jul; 152(7):2722-30. PubMed ID: 21521749
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Pituitary hormone gene expression and secretion in human growth hormone-releasing hormone transgenic mice: focus on lactotroph function.
    Moore JP, Cai A, Hostettler ME, Arbogast LA, Voogt JL, Hyde JF.
    Endocrinology; 2000 Jan; 141(1):81-90. PubMed ID: 10614626
    [Abstract] [Full Text] [Related]

  • 13. mPRs represent a novel target for PRL inhibition in experimental prolactinomas.
    Camilletti MA, Abeledo-Machado A, Perez PA, Faraoni EY, De Fino F, Rulli SB, Ferraris J, Pisera D, Gutierrez S, Thomas P, Díaz-Torga G.
    Endocr Relat Cancer; 2019 May; 26(5):497-510. PubMed ID: 30856609
    [Abstract] [Full Text] [Related]

  • 14. PTTG expression in different experimental and human prolactinomas in relation to dopaminergic control of lactotropes.
    Cristina C, Díaz-Torga GS, Goya RG, Kakar SS, Perez-Millán MI, Passos VQ, Giannella-Neto D, Bronstein MD, Becu-Villalobos D.
    Mol Cancer; 2007 Jan 12; 6():4. PubMed ID: 17222350
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Conditional Deletion of the Prolactin Receptor Reveals Functional Subpopulations of Dopamine Neurons in the Arcuate Nucleus of the Hypothalamus.
    Brown RS, Kokay IC, Phillipps HR, Yip SH, Gustafson P, Wyatt A, Larsen CM, Knowles P, Ladyman SR, LeTissier P, Grattan DR.
    J Neurosci; 2016 Aug 31; 36(35):9173-85. PubMed ID: 27581458
    [Abstract] [Full Text] [Related]

  • 17. Fetal Alcohol Exposure Reduces Dopamine Receptor D2 and Increases Pituitary Weight and Prolactin Production via Epigenetic Mechanisms.
    Gangisetty O, Wynne O, Jabbar S, Nasello C, Sarkar DK.
    PLoS One; 2015 Aug 31; 10(10):e0140699. PubMed ID: 26509893
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. New insights into the endocrine and metabolic roles of dopamine D2 receptors gained from the Drd2 mouse.
    Garcia-Tornadú I, Perez-Millan MI, Recouvreux V, Ramirez MC, Luque G, Risso GS, Ornstein AM, Cristina C, Diaz-Torga G, Becu-Villalobos D.
    Neuroendocrinology; 2010 Aug 31; 92(4):207-14. PubMed ID: 20975260
    [Abstract] [Full Text] [Related]

  • 20. Pituitary prolactin-secreting tumor formation: recent developments.
    Xu RK, Wu XM, Di AK, Xu JN, Pang CS, Pang SF.
    Biol Signals Recept; 2000 Aug 31; 9(1):1-20. PubMed ID: 10686432
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 18.