These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


409 related items for PubMed ID: 12372277

  • 21. Studying polyglutamine diseases in Drosophila.
    Xu Z, Tito AJ, Rui YN, Zhang S.
    Exp Neurol; 2015 Dec; 274(Pt A):25-41. PubMed ID: 26257024
    [Abstract] [Full Text] [Related]

  • 22. [Polyglutamine diseases: a pathologic view].
    Yamada M.
    Rinsho Shinkeigaku; 2003 Nov; 43(11):903-5. PubMed ID: 15152499
    [Abstract] [Full Text] [Related]

  • 23. Polyglutamine and transcription: gene expression changes shared by DRPLA and Huntington's disease mouse models reveal context-independent effects.
    Luthi-Carter R, Strand AD, Hanson SA, Kooperberg C, Schilling G, La Spada AR, Merry DE, Young AB, Ross CA, Borchelt DR, Olson JM.
    Hum Mol Genet; 2002 Aug 15; 11(17):1927-37. PubMed ID: 12165555
    [Abstract] [Full Text] [Related]

  • 24. Cell death in polyglutamine diseases.
    Evert BO, Wüllner U, Klockgether T.
    Cell Tissue Res; 2000 Jul 15; 301(1):189-204. PubMed ID: 10928291
    [Abstract] [Full Text] [Related]

  • 25. Experimental models for identifying modifiers of polyglutamine-induced aggregation and neurodegeneration.
    Calamini B, Lo DC, Kaltenbach LS.
    Neurotherapeutics; 2013 Jul 15; 10(3):400-15. PubMed ID: 23700210
    [Abstract] [Full Text] [Related]

  • 26. Polyglutamine diseases.
    Bunting EL, Hamilton J, Tabrizi SJ.
    Curr Opin Neurobiol; 2022 Feb 15; 72():39-47. PubMed ID: 34488036
    [Abstract] [Full Text] [Related]

  • 27. Increased aggregation of polyleucine compared with that of polyglutamine in dentatorubral-pallidoluysian atrophy protein.
    Suzuki Y, Jin C, Yazawa I.
    Neurosci Lett; 2013 Sep 27; 552():156-61. PubMed ID: 23933208
    [Abstract] [Full Text] [Related]

  • 28. Arginine is a disease modifier for polyQ disease models that stabilizes polyQ protein conformation.
    Minakawa EN, Popiel HA, Tada M, Takahashi T, Yamane H, Saitoh Y, Takahashi Y, Ozawa D, Takeda A, Takeuchi T, Okamoto Y, Yamamoto K, Suzuki M, Fujita H, Ito C, Yagihara H, Saito Y, Watase K, Adachi H, Katsuno M, Mochizuki H, Shiraki K, Sobue G, Toda T, Wada K, Onodera O, Nagai Y.
    Brain; 2020 Jun 01; 143(6):1811-1825. PubMed ID: 32436573
    [Abstract] [Full Text] [Related]

  • 29. Trinucleotide repeats in neurologic diseases: an hypothesis concerning the pathogenesis of Huntington's disease, Kennedy's disease, and spinocerebellar ataxia type I.
    Cha JH, Dure LS.
    Life Sci; 1994 Jun 01; 54(20):1459-64. PubMed ID: 8190020
    [Abstract] [Full Text] [Related]

  • 30. [Therapeutic strategies for the polyglutamine diseases].
    Nagai Y, Popiel HA, Fujikake N, Toda T.
    Brain Nerve; 2007 Apr 01; 59(4):393-404. PubMed ID: 17447526
    [Abstract] [Full Text] [Related]

  • 31. Intranuclear neuronal inclusions in Huntington's disease and dentatorubral and pallidoluysian atrophy: correlation between the density of inclusions and IT15 CAG triplet repeat length.
    Becher MW, Kotzuk JA, Sharp AH, Davies SW, Bates GP, Price DL, Ross CA.
    Neurobiol Dis; 1998 Apr 01; 4(6):387-97. PubMed ID: 9666478
    [Abstract] [Full Text] [Related]

  • 32. Repeat expansion and autosomal dominant neurodegenerative disorders: consensus and controversy.
    Rudnicki DD, Margolis RL.
    Expert Rev Mol Med; 2003 Aug 22; 5(21):1-24. PubMed ID: 14585172
    [Abstract] [Full Text] [Related]

  • 33. CAG repeat disorder models and human neuropathology: similarities and differences.
    Yamada M, Sato T, Tsuji S, Takahashi H.
    Acta Neuropathol; 2008 Jan 22; 115(1):71-86. PubMed ID: 17786457
    [Abstract] [Full Text] [Related]

  • 34. Aging causes distinct characteristics of polyglutamine amyloids in vivo.
    Tonoki A, Kuranaga E, Ito N, Nekooki-Machida Y, Tanaka M, Miura M.
    Genes Cells; 2011 May 22; 16(5):557-64. PubMed ID: 21466635
    [Abstract] [Full Text] [Related]

  • 35. Introduction to the Special Issue on Spinal and Bulbar Muscular Atrophy.
    Pennuto M, Gozes I.
    J Mol Neurosci; 2016 Mar 22; 58(3):313-6. PubMed ID: 26875173
    [Abstract] [Full Text] [Related]

  • 36. Lysine-rich histone (H1) is a lysyl substrate of tissue transglutaminase: possible involvement of transglutaminase in the formation of nuclear aggregates in (CAG)(n)/Q(n) expansion diseases.
    Cooper AJ, Wang J, Pasternack R, Fuchsbauer HL, Sheu RK, Blass JP.
    Dev Neurosci; 2000 Mar 22; 22(5-6):404-17. PubMed ID: 11111157
    [Abstract] [Full Text] [Related]

  • 37. Polyglutamine disease proteins: Commonalities and differences in interaction profiles and pathological effects.
    Bonsor M, Ammar O, Schnoegl S, Wanker EE, Silva Ramos E.
    Proteomics; 2024 Jun 22; 24(12-13):e2300114. PubMed ID: 38615323
    [Abstract] [Full Text] [Related]

  • 38. Amino acid sequences flanking polyglutamine stretches influence their potential for aggregate formation.
    Nozaki K, Onodera O, Takano H, Tsuji S.
    Neuroreport; 2001 Oct 29; 12(15):3357-64. PubMed ID: 11711886
    [Abstract] [Full Text] [Related]

  • 39. Polyglutamine disease: acetyltransferases awry.
    Hughes RE.
    Curr Biol; 2002 Feb 19; 12(4):R141-3. PubMed ID: 11864588
    [Abstract] [Full Text] [Related]

  • 40. Transcriptional Dysregulation and Post-translational Modifications in Polyglutamine Diseases: From Pathogenesis to Potential Therapeutic Strategies.
    Xiang C, Zhang S, Dong X, Ma S, Cong S.
    Front Mol Neurosci; 2018 Feb 19; 11():153. PubMed ID: 29867345
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 21.