These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


109 related items for PubMed ID: 12379309

  • 21. Quantitation of cholesterol crystallization from supersaturated model bile.
    Portincasa P, Venneman NG, Moschetta A, van den Berg A, Palasciano G, vanBerge-Henegouwen GP, van Erpecum KJ.
    J Lipid Res; 2002 Apr; 43(4):604-10. PubMed ID: 11907143
    [Abstract] [Full Text] [Related]

  • 22. Structural characterization of the micelle-vesicle transition in lecithin-bile salt solutions.
    Long MA, Kaler EW, Lee SP.
    Biophys J; 1994 Oct; 67(4):1733-42. PubMed ID: 7819505
    [Abstract] [Full Text] [Related]

  • 23. Cholesterol monomer activity and its role in understanding cholesterol saturation and crystallization.
    Higuchi WI, Lee PH, Takayama K, Jain UK, Mazer NA.
    Hepatology; 1990 Sep; 12(3 Pt 2):88S-91S; discussion 91S-93S. PubMed ID: 2210664
    [Abstract] [Full Text] [Related]

  • 24. Inhibition of cholesterol crystallization under bilirubin deconjugation: partial characterization of mechanisms whereby infected bile accelerates pigment stone formation.
    Nakai K, Tazuma S, Nishioka T, Chayama K.
    Biochim Biophys Acta; 2003 Jun 10; 1632(1-3):48-54. PubMed ID: 12782150
    [Abstract] [Full Text] [Related]

  • 25. Silicone polymer uptake method for determination of cholesterol thermodynamic activity in model bile systems.
    Lee PH, Cheng DC, Takayama K, Higuchi WI.
    J Pharm Sci; 1988 Jul 10; 77(7):610-4. PubMed ID: 3171948
    [Abstract] [Full Text] [Related]

  • 26. Cholesterol precipitation from cholesterol-supersaturated bile models.
    Fudim-Levin E, Bor A, Kaplun A, Talmon Y, Lichtenberg D.
    Biochim Biophys Acta; 1995 Oct 26; 1259(1):23-8. PubMed ID: 7492611
    [Abstract] [Full Text] [Related]

  • 27. Degree of fatty acyl chain unsaturation in biliary lecithin dictates cholesterol nucleation and crystal growth.
    Tazuma S, Ochi H, Teramen K, Yamashita Y, Horikawa K, Miura H, Hirano N, Sasaki M, Aihara N, Hatsushika S.
    Biochim Biophys Acta; 1994 Nov 17; 1215(1-2):74-8. PubMed ID: 7948010
    [Abstract] [Full Text] [Related]

  • 28. Dissolution of human cholesterol gallstones in bile salt/lecithin mixtures: effect of bile salt hydrophobicity and various pHs.
    Angelico M, Mogavero L, Baiocchi L, Nistri A, Gandin C.
    Scand J Gastroenterol; 1995 Dec 17; 30(12):1178-85. PubMed ID: 9053971
    [Abstract] [Full Text] [Related]

  • 29. Bile salt hydrophobicity controls vesicle secretion rates and transformations in native bile.
    Cohen DE, Leighton LS, Carey MC.
    Am J Physiol; 1992 Sep 17; 263(3 Pt 1):G386-95. PubMed ID: 1415551
    [Abstract] [Full Text] [Related]

  • 30. Cholesterol Binding to Simple Micelles in Aqueous Bile-Salt-Cholesterol Solutions.
    Liu CL.
    J Colloid Interface Sci; 1997 Jun 15; 190(2):261-8. PubMed ID: 9241165
    [Abstract] [Full Text] [Related]

  • 31. The effect of bile acid hydrophobicity on nucleation of several types of cholesterol crystals from model bile vesicles.
    Stolk MF, van de Heijning BJ, van Erpecum KJ, van den Broek AM, Renooij W, van Berge-Henegouwen GP.
    J Hepatol; 1994 Jun 15; 20(6):802-10. PubMed ID: 7930482
    [Abstract] [Full Text] [Related]

  • 32. Cryoelectron microscopy of a nucleating model bile in vitreous ice: formation of primordial vesicles.
    Gantz DL, Wang DQ, Carey MC, Small DM.
    Biophys J; 1999 Mar 15; 76(3):1436-51. PubMed ID: 10049325
    [Abstract] [Full Text] [Related]

  • 33. The validity of the cholesterol nucleation assay.
    de Bruijn MA, Noordam C, Goldhoorn BG, Tytgat GN, Groen AK.
    Biochim Biophys Acta; 1992 Jan 16; 1138(1):41-5. PubMed ID: 1737069
    [Abstract] [Full Text] [Related]

  • 34. Increased saturation of the fatty acids in the sn-2 position of phospholipids reduces cholesterol crystallization in model biles.
    Ringel Y, Sömjen GJ, Konikoff FM, Rosenberg R, Gilat T.
    Biochim Biophys Acta; 1998 Feb 23; 1390(3):293-300. PubMed ID: 9487150
    [Abstract] [Full Text] [Related]

  • 35. Effects of hydrophobic and hydrophilic bile salts on gallstone growth and dissolution in model biles.
    Venneman NG, van Kammen M, Renooij W, Vanberge-Henegouwen GP, van Erpecum KJ.
    Biochim Biophys Acta; 2005 Jan 05; 1686(3):209-19. PubMed ID: 15629690
    [Abstract] [Full Text] [Related]

  • 36. Effect of drugs on cholesterol crystallization in an artificial bile model and relation of this effect to drug binding to albumin.
    Smídková M, Spundová M, Marecek Z, Entlicher G.
    Fundam Clin Pharmacol; 2003 Jun 05; 17(3):331-9. PubMed ID: 12803572
    [Abstract] [Full Text] [Related]

  • 37. Method for quantitative assessment of transformation of non-micellar cholesterol carriers in model bile systems.
    Yamashita Y, Tazuma S, Kajiyama G.
    J Gastroenterol Hepatol; 1996 Sep 05; 11(9):864-9. PubMed ID: 8889967
    [Abstract] [Full Text] [Related]

  • 38. Characterization of model bile using fluorescence energy transfer from dehydroergosterol to dansylated lecithin.
    Wrenn SP, Gudheti M, Veleva AN, Kaler EW, Lee SP.
    J Lipid Res; 2001 Jun 05; 42(6):923-34. PubMed ID: 11369800
    [Abstract] [Full Text] [Related]

  • 39. Nucleation and growth of cholesterol crystals. Kinetic determinants in supersaturated native bile.
    Holzbach RT, Busch N.
    Gastroenterol Clin North Am; 1991 Mar 05; 20(1):67-84. PubMed ID: 2022426
    [Abstract] [Full Text] [Related]

  • 40. A sensitive method for determination of cholesterol growth using model solutions of supersaturated bile.
    Busch N, Tokumo H, Holzbach RT.
    J Lipid Res; 1990 Oct 05; 31(10):1903-9. PubMed ID: 2127795
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 6.