These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
732 related items for PubMed ID: 12382043
1. Improving ethanol production and viability of Saccharomyces cerevisiae by a vitamin feeding strategy during fed-batch process. Alfenore S, Molina-Jouve C, Guillouet SE, Uribelarrea JL, Goma G, Benbadis L. Appl Microbiol Biotechnol; 2002 Oct; 60(1-2):67-72. PubMed ID: 12382043 [Abstract] [Full Text] [Related]
2. Aeration strategy: a need for very high ethanol performance in Saccharomyces cerevisiae fed-batch process. Alfenore S, Cameleyre X, Benbadis L, Bideaux C, Uribelarrea JL, Goma G, Molina-Jouve C, Guillouet SE. Appl Microbiol Biotechnol; 2004 Feb; 63(5):537-42. PubMed ID: 12879304 [Abstract] [Full Text] [Related]
3. Ethanol fermentation in an immobilized cell reactor using Saccharomyces cerevisiae. Najafpour G, Younesi H, Syahidah Ku Ismail K. Bioresour Technol; 2004 May; 92(3):251-60. PubMed ID: 14766158 [Abstract] [Full Text] [Related]
4. Application of oscillation for efficiency improvement of continuous ethanol fermentation with Saccharomyces cerevisiae under very-high-gravity conditions. Shen Y, Ge XM, Bai FW. Appl Microbiol Biotechnol; 2010 Mar; 86(1):103-8. PubMed ID: 19898843 [Abstract] [Full Text] [Related]
5. Fed-batch cultivation of Saccharomyces cerevisiae on lignocellulosic hydrolyzate. Petersson A, Lidén G. Biotechnol Lett; 2007 Feb; 29(2):219-25. PubMed ID: 17091372 [Abstract] [Full Text] [Related]
6. Physiological behaviour of Saccharomyces cerevisiae in aerated fed-batch fermentation for high level production of bioethanol. Cot M, Loret MO, François J, Benbadis L. FEMS Yeast Res; 2007 Jan; 7(1):22-32. PubMed ID: 17005001 [Abstract] [Full Text] [Related]
7. High-cell-density fermentation for ergosterol production by Saccharomyces cerevisiae. Shang F, Wen S, Wang X, Tan T. J Biosci Bioeng; 2006 Jan; 101(1):38-41. PubMed ID: 16503289 [Abstract] [Full Text] [Related]
8. Modeling of Xanthophyllomyces dendrorhous growth on glucose and overflow metabolism in batch and fed-batch cultures for astaxanthin production. Liu YS, Wu JY. Biotechnol Bioeng; 2008 Dec 01; 101(5):996-1004. PubMed ID: 18683256 [Abstract] [Full Text] [Related]
9. Repeated-batch fermentation using flocculent hybrid, Saccharomyces cerevisiae CHFY0321 for efficient production of bioethanol. Choi GW, Kang HW, Moon SK. Appl Microbiol Biotechnol; 2009 Aug 01; 84(2):261-9. PubMed ID: 19319524 [Abstract] [Full Text] [Related]
10. Fermentation of high concentrations of lactose to ethanol by engineered flocculent Saccharomyces cerevisiae. Guimarães PM, Teixeira JA, Domingues L. Biotechnol Lett; 2008 Nov 01; 30(11):1953-8. PubMed ID: 18575804 [Abstract] [Full Text] [Related]
11. Optimization of bioprocess for production of copper-enriched biomass of industrially important microorganism Saccharomyces cerevisiae. Mrvcić J, Stanzer D, Stehlik-Tomas V, Skevin D, Grba S. J Biosci Bioeng; 2007 Apr 01; 103(4):331-7. PubMed ID: 17502274 [Abstract] [Full Text] [Related]
12. Selection of Saccharomyces cerevisiae strains for efficient very high gravity bio-ethanol fermentation processes. Pereira FB, Guimarães PM, Teixeira JA, Domingues L. Biotechnol Lett; 2010 Nov 01; 32(11):1655-61. PubMed ID: 20574836 [Abstract] [Full Text] [Related]
14. Optimization of an ethanol production medium in very high gravity fermentation. Wang FQ, Gao CJ, Yang CY, Xu P. Biotechnol Lett; 2007 Feb 01; 29(2):233-6. PubMed ID: 17091376 [Abstract] [Full Text] [Related]
15. Comparison of SHF and SSF processes from steam-exploded wheat straw for ethanol production by xylose-fermenting and robust glucose-fermenting Saccharomyces cerevisiae strains. Tomás-Pejó E, Oliva JM, Ballesteros M, Olsson L. Biotechnol Bioeng; 2008 Aug 15; 100(6):1122-31. PubMed ID: 18383076 [Abstract] [Full Text] [Related]
16. Alcoholic fermentation of xylose and mixed sugars using recombinant Saccharomyces cerevisiae engineered for xylose utilization. Madhavan A, Tamalampudi S, Srivastava A, Fukuda H, Bisaria VS, Kondo A. Appl Microbiol Biotechnol; 2009 Apr 15; 82(6):1037-47. PubMed ID: 19125247 [Abstract] [Full Text] [Related]
17. Production of ethanol directly from potato starch by mixed culture of Saccharomyces cerevisiae and Aspergillus niger using electrochemical bioreactor. Jeon BY, Kim DH, Na BK, Ahn DH, Park DH. J Microbiol Biotechnol; 2008 Mar 15; 18(3):545-51. PubMed ID: 18388475 [Abstract] [Full Text] [Related]
18. Bioethanol production from rice straw by a sequential use of Saccharomyces cerevisiae and Pichia stipitis with heat inactivation of Saccharomyces cerevisiae cells prior to xylose fermentation. Li Y, Park JY, Shiroma R, Tokuyasu K. J Biosci Bioeng; 2011 Jun 15; 111(6):682-6. PubMed ID: 21397557 [Abstract] [Full Text] [Related]
19. Identification of white-rot and soft-rot fungi increasing ethanol production from spent sulfite liquor in co-culture with Saccharomyces cerevisiae. Holmgren M, Sellstedt A. J Appl Microbiol; 2008 Jul 15; 105(1):134-40. PubMed ID: 18248376 [Abstract] [Full Text] [Related]